精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx).
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间.

分析 将函数进行化简,结合三角函数的图象和性质即可解决本题问题.

解答 解:(1)由f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx).
?$f(x)=3sinxcosx-\sqrt{3}{sin^2}x+\sqrt{3}{cos^2}x-cosxsinx$
?f(x)=$2sinxcosx+\sqrt{3}({cos^2}x-{sin^2}x)$
?f(x)=$sin2x+\sqrt{3}cos2x=2sin(2x+\frac{π}{3})$.
因此f(x)的最小正周期$T=\frac{2π}{2}=π$.
(2)由正弦函数的图象和性质即可知:$2x+\frac{π}{3}$∈[$2kπ-\frac{π}{2}$,$2kπ+\frac{π}{2}$]单调递增区间.
即$2kπ-\frac{π}{2}≤2x+\frac{π}{3}≤2kπ+\frac{π}{2}$,
解得:$kπ-\frac{5π}{12}≤x≤kπ+\frac{π}{12}$(k∈Z)
因此f(x)的单调递增区间为$[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈Z)$.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若f′(x0)=-3,则$\lim_{h→0}\frac{{f({x_0}-3h)-f({x_0}+h)}}{2h}$=(  )
A.-3B.6C.-6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.为了判断高中学生的文理科选修是否与性别有关,随机调查了50名学生,得到如标2×2列联表:
 理科文科总计
20 525
101525
总计302050
那么,认为“高中学生的文理科选修与性别有关系”犯错误的概率不超过0.005.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1是直棱柱,AB⊥AC,AB=AC=AA1=2,点M,N分别是A1B和A1C的中点.
(1)求证:直线MN∥面ABC
(2)求三棱锥B-ACM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.数列{an}满足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*)且Sn=$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}$,则Sn的整数部分的所有可能值构成的集合是(  )
A.{0,1,2}B.{0,1,2,3}C.{1,2}D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={x|x=$\frac{n}{3}$,n∈Z},B={x|x=n±$\frac{1}{3}$,n∈Z},C={x|x=n±$\frac{2}{3}$,n∈Z},则下列结论中正确的是(  )
A.B≠CB.A?BC.A?B=CD.A?C

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=2${\;}^{\frac{1}{5}}$,b=($\frac{6}{7}$)${\;}^{\frac{1}{6}}$,c=ln$\frac{3}{π}$,则(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集为R,集合A={x|x<-2或x>3},B={-2,0,2,4},则(∁RA)∩B=(  )
A.{-2,0,2}B.{-2,2,4}C.{-2,0,3}D.{0,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用辗转相除法求80和36的最大公约数,并用更相减损术检验所得结果.

查看答案和解析>>

同步练习册答案