分析 将函数进行化简,结合三角函数的图象和性质即可解决本题问题.
解答 解:(1)由f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx).
?$f(x)=3sinxcosx-\sqrt{3}{sin^2}x+\sqrt{3}{cos^2}x-cosxsinx$
?f(x)=$2sinxcosx+\sqrt{3}({cos^2}x-{sin^2}x)$
?f(x)=$sin2x+\sqrt{3}cos2x=2sin(2x+\frac{π}{3})$.
因此f(x)的最小正周期$T=\frac{2π}{2}=π$.
(2)由正弦函数的图象和性质即可知:$2x+\frac{π}{3}$∈[$2kπ-\frac{π}{2}$,$2kπ+\frac{π}{2}$]单调递增区间.
即$2kπ-\frac{π}{2}≤2x+\frac{π}{3}≤2kπ+\frac{π}{2}$,
解得:$kπ-\frac{5π}{12}≤x≤kπ+\frac{π}{12}$(k∈Z)
因此f(x)的单调递增区间为$[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈Z)$.
点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 6 | C. | -6 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 理科 | 文科 | 总计 | |
| 男 | 20 | 5 | 25 |
| 女 | 10 | 15 | 25 |
| 总计 | 30 | 20 | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | {0,1,2,3} | C. | {1,2} | D. | {0,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B≠C | B. | A?B | C. | A?B=C | D. | A?C |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | c<b<a | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,0,2} | B. | {-2,2,4} | C. | {-2,0,3} | D. | {0,2,4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com