精英家教网 > 高中数学 > 题目详情
12.数列{an}满足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*)且Sn=$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}$,则Sn的整数部分的所有可能值构成的集合是(  )
A.{0,1,2}B.{0,1,2,3}C.{1,2}D.{0,2}

分析 数列{an}满足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*).可得:an+1-an=$({a}_{n}-1)^{2}$>0,可得:数列{an}单调递增.可得a2=$\frac{13}{9}$,a3=$\frac{133}{81}$,a4=$\frac{13477}{6561}$.$\frac{1}{{a}_{3}-1}$=$\frac{81}{52}$>1,$\frac{1}{{a}_{4}-1}$=$\frac{6561}{6916}$<1.另一方面:$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$,可得Sn=$(\frac{1}{{a}_{1}-1}-\frac{1}{{a}_{2}-1})$+$(\frac{1}{{a}_{2}-1}-\frac{1}{{a}_{3}-1})$+…+$(\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n+1}-1})$=3-$\frac{1}{{a}_{n+1}-1}$,对n=1,2,3,n≥4,分类讨论即可得出.

解答 解:∵数列{an}满足a1=$\frac{4}{3}$,an+1-1=an(an-1)(n∈N*).
可得:an+1-an=$({a}_{n}-1)^{2}$>0,∴an+1>an,因此数列{an}单调递增.
则a2-1=$\frac{4}{3}×(\frac{4}{3}-1)$,可得a2=$\frac{13}{9}$,同理可得:a3=$\frac{133}{81}$,a4=$\frac{13477}{6561}$.
$\frac{1}{{a}_{3}-1}$=$\frac{81}{52}$>1,$\frac{1}{{a}_{4}-1}$=$\frac{6561}{6916}$<1,
另一方面:$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n}-1}$-$\frac{1}{{a}_{n+1}-1}$,
∴Sn=$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}$=$(\frac{1}{{a}_{1}-1}-\frac{1}{{a}_{2}-1})$+$(\frac{1}{{a}_{2}-1}-\frac{1}{{a}_{3}-1})$+…+$(\frac{1}{{a}_{n}-1}-\frac{1}{{a}_{n+1}-1})$=$\frac{1}{{a}_{1}-1}$-$\frac{1}{{a}_{n+1}-1}$=3-$\frac{1}{{a}_{n+1}-1}$,
当n=1时,S1=$\frac{1}{{a}_{1}}$=$\frac{3}{4}$,其整数部分为0;
当n=2时,S2=$\frac{3}{4}$+$\frac{9}{13}$=1+$\frac{23}{52}$,其整数部分为1;
当n=3时,S3=$\frac{3}{4}$+$\frac{9}{13}$+$\frac{81}{133}$=2+$\frac{355}{6561}$,其整数部分为2;
当n≥4时,Sn=2+1-$\frac{1}{{a}_{n+1}-1}$∈(2,3),其整数部分为2.
综上可得:Sn的整数部分的所有可能值构成的集合是{0,1,2}.
故选:A.

点评 本题考查了数列的单调性、递推关系、“裂项求和”方法,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知A(1,0),B(0,1),则与$\overrightarrow{AB}$方向相同的单位向量为$(-\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{π}{2}$<β<α<$\frac{3}{4}$π,cos(α+β)=-$\frac{3}{5}$,sin(α-β)=$\frac{5}{13}$,求cos2β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某饮料店某5天的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的数据如表:
x-2-1012
y54221
甲、乙、丙、丁四位同学对上述数据进行了研究,分别得到了x与y之间的四个线性回归方程:①$\widehat{y}$=-x+3,②$\widehat{y}$=-x+2.8,③$\widehat{y}$=-x+2.6,④$\widehat{y}$=-x+2.4,其中正确的方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法中,不正确的是(  )
A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题
B.命题“p或q”为真命题,则命题p和命题q均为真命题
C.命题“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0”
D.“x>3”是“x>2”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx).
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派方法种数是(  )
A.70B.140C.420D.840

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若复数z=1+i,i为虚数单位,则(1+z)•$\overline z$=3-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图:已知四棱柱ABCD-A1B1C1D1的底面ABCD是菱形,∠C1CB=∠C1CD=∠BCD=60°,且C1C=CD=1.
(1)试用$\overrightarrow{CD}$,$\overrightarrow{CB}$,$\overrightarrow{C{C}_{1}}$表示$\overrightarrow{C{A_1}}$,并求|${\overrightarrow{C{A_1}}}$|;
(2)求证:CC1⊥BD;
(3)试判断直线A1C与面C1BD是否垂直,若垂直,给出证明;若不垂直,请说明理由.

查看答案和解析>>

同步练习册答案