精英家教网 > 高中数学 > 题目详情
3.全集为1,A、B、C均为1的子集,则阴影部分表示的集合是(∁I(A∪C))∩B.

分析 先根据图中的阴影部分的元素属于哪个集合,不属于哪个集合进行判定,然后利用集合的交集和补集表示即可.

解答 解:根据题图可知阴影部分中的元素属于B,不属于A,C
则阴影部分所表示的集合是(∁I(A∪C))∩B
故答案为:(∁I(A∪C))∩B

点评 本题主要考查了Venn图表达集合的关系及运算等基础知识,以及识图能力的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知集合A={y|y=-x2+5,x∈[-$\sqrt{7}$,-1]},B={x|x-a<0}.
(1)若A∩B=∅,求实数a的取值范围;
(2)若A∩B≠A,求实数a的取值范围.
(3)若A∩B≠∅且A∩B≠A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a、b∈R,a+b>0,试比较a3+b3与ab2+a2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简:$\frac{si{n}^{2}x+co{s}^{2}x}{(cosx-sinx)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{m}$=(2sin$\frac{x}{2}$,-$\sqrt{3}$),$\overrightarrow{n}$=(1-2sin2$\frac{x}{4}$,cosx),(其中x∈R).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求x的取值的集合;
(2)若f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-2t,当x∈[0,π]是函数f(x)有两个零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.等差数列{an}中,a1=a-1,a2=a+1,a3=2a+3,则它的通项公式为(  )
A.an=2n+1B.an=2n-1C.an=2n-3D.an=2n+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若点P(cosα,sinα)在直线y=-2x上,则sin2α+2cos2α的值是(  )
A.-2B.-$\frac{7}{5}$C.-$\frac{14}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{2^{1-x}},x≤1\\ 1-{log_2}x,x>1\end{array}$,则f(f(-2))=-2;满足不等式f(x)≤4的x的取值范围是{x|x≥-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.定义在(-1,1)上的奇函数f(x),当0≤x<1时,f(x)=$\frac{a}{{a}^{2}-1}$(ax-1).
(1)求当-1<x<0时,f(x)的解析式;
(2)判断函数f(x)的单调性,并应用函数f(x)的性质求满足f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

同步练习册答案