精英家教网 > 高中数学 > 题目详情

【题目】已知函数,( )是偶函数.

(1)求的值;

(2)设函数,其中.若函数的图象有且只有一个交点,求的取值范围.

【答案】(1) (2)

【解析】试题分析:(1)由 ;(2)由已知可得方程只有一个解 只有一个解,又 ,设,则有关于的方程,然后对分类讨论得:实数的取值范围是.

试题解析:(1函数是偶函数,

恒成立,

,则.

2,函数的图象有且只有一个公共点,即方程只有一个解,由已知得

方程等价于

,则有关于的方程

,即,则需关于的方程只有一个大于的正数解,

恰好有一个大于的正解,

满足题意;

,即时,解得,不满足题意;

,即时,由,得

时,则需关于的方程只有一个小于的整数解,

解得满足题意;当时, 不满足题意,

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆M过点P(10,4),且与直线4x+3y-20=0相切于点A(2,4)

(1)求圆M的标准方程;

(2)设平行于OA的直线l与圆M相交于BC两点,且,求直线l的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a2n=n﹣an , a2n+1=an+1,则a1+a2+a3+…+a100=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣2a|,a∈R.
(1)若不等式f(x)<1的解集为{x|1<x<3},求a的值;
(2)若存在x0∈R,使f(x0)+x0<3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;
(Ⅲ)设函数g(x)= (e为自然对数底数),若在[1,e]上至少存在一点x0 , 使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数为偶函数且在区间(0,+∞)上单调递增的是(
A.y=
B.y=﹣x2+1
C.y=lg|x|
D.y=3x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+2kx﹣4,若对任意x∈R,f(x)﹣|x+1|﹣|x﹣1|≤0恒成立,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,若焦点在x轴上的椭圆C的焦距为2,且离心率为
(1)求椭圆C的标准方程;
(2)若经过点(0, )且斜率为k的直线l与椭圆C有两个不同的交点P和Q. (Ⅰ)求k的取值范围;
(Ⅱ)设椭圆C与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量 共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数 ,若在[1,e]上至少存在一点x0 , 使得f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案