精英家教网 > 高中数学 > 题目详情
12.在△ABC中,已知a=4,b=4$\sqrt{2}$,B=45°,则∠A=30°.

分析 由正弦定理,解得sinB.再由b<a,可得B<A=45°,由此可得B的值.

解答 解:在△ABC中,∠A=45°,a=4,b=4$\sqrt{2}$,则由正弦定理可得$\frac{4\sqrt{2}}{sin45°}=\frac{4}{sinA}$,解得sinA=$\frac{1}{2}$.
再由b>a,可得B>A,故A为锐角,故A=30°,
故答案为:30°.

点评 本题主要考查正弦定理的应用,大边对大角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow m=(\sqrt{3}cos\frac{x}{2},1)$,$\overrightarrow n=(sin\frac{x}{2},-{cos^2}\frac{x}{2})$,设函数$f(x)=\frac{1}{2}+\overrightarrow m•\overrightarrow n$.又在△ABC中,角A、B、C的对边分别是a,b,c,$f(A)=\frac{1}{2}$.
(1)求角A的大小;
(2)若a=3,且cos(B-C)+cosA=4sin2C.求c边的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点作一直线交椭圆于E,F两点,线段|EF|长的最大值与最小值分别是$4\sqrt{2},2\sqrt{2}$.
(1)求椭圆的方程;
(2)与圆(x-1)2+y2=1相切的直线l:y=kx+1与椭圆交于M,N两点,若椭圆上一点C满足$\overrightarrow{OM}+\overrightarrow{ON}=λ\overrightarrow{OC}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
求回归直线方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline y$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)可导,则 $\lim_{△x→0}\frac{f(1+△x)-f(1)}{3△x}$等于(  )
A.$\frac{1}{3}$ f′(1)B.3 f′(1)C.f′(1)D.f′(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都等于1,且两两夹角都为45°,则|$\overrightarrow{A{C}_{1}}$|=$\sqrt{3+3\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R)
(1)当0≤a<$\frac{1}{2}$时,讨论f(x)的单调性;
(2)设g(x)=x2-2bx+4,当a=$\frac{1}{4}$时,
(i)若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围;
(ii)对于任意x1,x2∈(1,2]都有|f(x1)-f(x2)|≤λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(1)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(2)证明:BD1∥平面B1EC;
(3)求平面ABD1与平面B1EC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“p:x∈{x|x2-x-2≥0}”,“q:x∈{x|2a-1≤x≤a+3}”,若?p是q的充分不必要条件,则a的取值范围是[-1,0].

查看答案和解析>>

同步练习册答案