精英家教网 > 高中数学 > 题目详情
1.已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(1)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(2)证明:BD1∥平面B1EC;
(3)求平面ABD1与平面B1EC所成锐二面角的余弦值.

分析 (1)连结BC1,交B1C于M,直线ME即为平面ABD1与平面B1EC的交线.
(2)推导出EM∥BD1,由此能证明BD1∥平面B1EC.
(3)平面B1EC上点B1作BC1的垂线,交BC1于F,过点F作直线EM的垂线,交EM于N,连结B1N,由三垂线定理知B1N⊥EM,∠B1NF就是平面ABD1与平面B1EC所成锐二面角的平面角,由此能求出平面ABD1与平面B1EC所成锐二面角的余弦值.

解答 解:(1)连结BC1,交B1C于M
则直线ME即为平面ABD1与平面B1EC的交线,
如图所示.
证明:(2)由(1)∵在长方体AC1中,M为BC1的中点,
又E为D1C1的中点,
∴在△D1C1B中EM是中位线,∴EM∥BD1
又EM?平面B1EC,BD1?平面B1EC,
∴BD1∥平面B1EC.
解:(3)∵在长方体AC1中,AD1∥BC1
平面ABD1即是平面ABC1D1
过平面B1EC上点B1作BC1的垂线,交BC1于F,如图①,
∵在长方体AC1中,AB⊥平面B1BCC1,∴B1F⊥AB,
∵BC1∩AB=B,∴B1F⊥平面ABD1于F,
过点F作直线EM的垂线,交EM于N,如图②,
连结B1N,由三垂线定理知B1N⊥EM,
由二面角的平面角定义知,在Rt△B1FN中,∠B1NF就是平面ABD1与平面B1EC所成锐二面角的平面角,
∵长方体AC1中,AD=AB=2,AA1=1,
在平面图①中,B1F=$\frac{1×2}{\sqrt{5}}$=$\frac{2}{\sqrt{5}}$,
FM=$\frac{3\sqrt{5}}{10}$,C1M=$\frac{\sqrt{5}}{2}$,C1E=1,
在平面图②中,
由△EMC1∽△FMN1,得FN=$\frac{E{C}_{1}•FM}{EM}$=$\frac{1×\frac{3\sqrt{5}}{10}}{\sqrt{1+(\frac{\sqrt{5}}{2})^{2}}}$=$\frac{\sqrt{5}}{5}$,
∴tan$∠{B}_{1}NF=\frac{{B}_{1}F}{NF}$=$\frac{2}{\sqrt{5}}•\frac{5}{\sqrt{5}}$=2,
cos$∠{B}_{1}NF=\frac{\sqrt{5}}{5}$.
∴平面ABD1与平面B1EC所成锐二面角的余弦值为$\frac{\sqrt{5}}{5}$.

点评 本题考查交线的作法,考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在直角坐标系中xOy中,直线l经过点M(1,0)且倾斜角为α.以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程是ρsin2θ-4cosθ=0,直线l与曲线C交于不同两点A,B.
(1)求直线l的参数方程和曲线C的直角坐标方程;
(2)过点M作于直线l垂直的直线l′与曲线C交于点M,N,求四边形AMBN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,已知a=4,b=4$\sqrt{2}$,B=45°,则∠A=30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x-4lnx,则曲线y=f(x)在点(1,f(1))处的切线方程为(  )
A.2x-y-3=0B.2x+y-3=0C.3x+y-4=0D.3x-y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+$\frac{a}{x}$-ea2(a≠0).
(1)讨论函数f(x)的极值;
(2)当a>0,记函数f(x)的最小值为g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个几何体的三视图如图所示,则该几何体的侧面积为(  )
A.10B.$4+3\sqrt{3}$C.$\frac{{5\sqrt{3}}}{3}$D.$12+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}}$(α为参数).在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+$\frac{π}{4}$)=2$\sqrt{2}$(ρ>0,0<θ<2π).
(Ⅰ)求C1与C2交点的极坐标;
(Ⅱ)P是C1上的任意一点,过P点作与C2的夹角为45°的直线交C2于点A.求|PA|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(α)=$\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$.
(1)求f(-$\frac{41π}{6}$)的值;
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.运行如图所示的程序,输出的结果是(  )
A.5B.6C.15D.21

查看答案和解析>>

同步练习册答案