精英家教网 > 高中数学 > 题目详情
10.已知f(α)=$\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$.
(1)求f(-$\frac{41π}{6}$)的值;
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{3}$,求f(α)的值.

分析 (1)利用诱导公式化简函数的解析式,代入求解即可.
(2)利用诱导公式求出正弦函数值,然后利用同角三角函数基本关系式求解即可.

解答 解:(1)f(α)=$\frac{{sin(π-α)cos(-α)cos(-α+\frac{3π}{2})}}{{cos(\frac{π}{2}-α)sin(-π-α)}}$
=$\frac{-sinαcosαsinα}{sinαsinα}$
=-cosα
f(-$\frac{41π}{6}$)=-cos(-$\frac{41π}{6}$)
=-cos(5π$+\frac{π}{6}$)
=cos$\frac{π}{6}$
=$\frac{{\sqrt{3}}}{2}$.
(2)α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{3}$,sinα=$-\frac{1}{3}$.
cosα=-$\sqrt{1-si{n}^{2}α}$
=$\frac{{2\sqrt{2}}}{3}$.

点评 本题考查诱导公式以及三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
求回归直线方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline y$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(1)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(2)证明:BD1∥平面B1EC;
(3)求平面ABD1与平面B1EC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是第2个字符是1,第4个字符为1,其它均为0的6位字符串010100,并规定空集表示为000000.若A={1,3},集合A∪B表示的字符串为101001,则满足条件的集合B的个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.复数z满足(1-2i)z=(1+i)2,则z对应复平面上的点的坐标为(-$\frac{4}{5}$,$\frac{2}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知两个不相等的非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,两组向量$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$,$\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$,$\overrightarrow{{y}_{5}}$均由2个$\overrightarrow{a}$和3个$\overrightarrow{b}$排列而成,记S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$+$\overrightarrow{{x}_{5}}$•$\overrightarrow{{y}_{5}}$,Smin表示S所有可能取值中的最小值.则下列命题正确的是 (  )
①S有5个不同的值;
②若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin与|$\overrightarrow{a}$|无关;
③若$\overrightarrow{a}$∥$\overrightarrow{b}$,则Smin与|$\overrightarrow{b}$|无关;
④若|$\overrightarrow{b}$|>4|$\overrightarrow{a}$|,则Smin>0;
⑤若|$\overrightarrow{b}$|=4|$\overrightarrow{a}$|,Smin=8|$\overrightarrow{a}$|2,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“p:x∈{x|x2-x-2≥0}”,“q:x∈{x|2a-1≤x≤a+3}”,若?p是q的充分不必要条件,则a的取值范围是[-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=$\frac{2+i}{1-2i}$,则z的共轭复数$\overline z$=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某校为了了解学生近视的情况,对四个非毕业年级各班的近视学生人数做了统计,每个年级都有7个班.如果某个年级的每个班的近视人数都不超过5人,则认定该年级为“学生视力保护达标年级”.这四个年级各班近视学生人数情况统计如表:
初一年级平均值为2,方差为2
初二年级平均值为1,方差大于0
高一年级中位数为3,众数为4
高二年级平均值为3,中位数为4
从表中数据可知:一定是“学生视力保护达标年级”的是(  )
A.初一年级B.初二年级C.高一年级D.高二年级

查看答案和解析>>

同步练习册答案