精英家教网 > 高中数学 > 题目详情
19.已知cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{5}{13}$,且α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求cosβ的值.

分析 根据α,β的范围计算sinα,sin(α+β),利用两角差的余弦公式计算.

解答 解:∵α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),∴α+β∈(0,π).
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{12}{13}$.
sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{4}{5}$.
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{5}{13}$×$\frac{3}{5}$+$\frac{12}{13}×\frac{4}{5}$=$\frac{33}{65}$.

点评 本题考查了两角差的余弦函数公式,同角三角函数的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x2+ax(a∈R),g(x)=$\left\{\begin{array}{l}{f(x),x≥0}\\{f′(x),x<0}\end{array}\right.$ (f′(x)为f(x)的导函数),若方程g(f(x))=0有四个不等的实根,则a的取值范围是(-∞,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在2与16之间插入a和b两个数,使得2,a,b,16四个数成等比数列,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)在区间[1,+∞)上是增函数,且当x0≥1,f(x0)≥1时,有f(f(x0))=x0.求证:f(x0)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知(x+2)5=a0+a1(x+4)+a2(x+4)2+a3(x+4)3+a4(x+4)4+a5(x+4)5,则a3=40.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上一个动点.若点P到直线x-y+2=0的距离大于t恒成立,则实数t的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义在D=($\frac{-1-\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$)上的函数f(x)=$\frac{1}{1-x-{x}^{2}}$,存在无穷数列{an},满足f(x)=a0+a1x+a2x2+…+anxn+…
(1)试求数列{an}的前三项a0、a1、a2的值,并证明:对任意的n∈N*都有an≥n;
(2)数列{an}满足bn=$\frac{{a}_{n}}{{a}_{n-1}{a}_{n+1}}$,n∈N*,是否存在正常数r,使{bn}的前n项和Sn≤rf(x)对任意的x∈D恒成立?若存在,试求出常数r的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图所示的数阵,第n行最右边的数是n2+n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.实数x,y满足条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{-2x+3y+5≥0}\end{array}\right.$,则目标函数z=x+2y的最大值为(  )
A.5B.4C.-1D.$\frac{16}{5}$

查看答案和解析>>

同步练习册答案