精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上一个动点.若点P到直线x-y+2=0的距离大于t恒成立,则实数t的最大值为$\sqrt{2}$.

分析 求出双曲线的渐近线,利用渐近线和直线x-y+2=0平行,求出两平行线之间的距离,利用不等式恒成立进行求解即可.

解答 解:双曲线的渐近线方程为y=x或y=-x
y=x到平行直线x-y+2=0的距离d=$\frac{2}{\sqrt{1+1}}=\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
则若点P到直线x-y+2=0的距离d>$\sqrt{2}$,
∵d>t恒成立,
则t≤$\sqrt{2}$,
即t的最大为$\sqrt{2}$,
故答案为:$\sqrt{2}$

点评 本题主要考查双曲线的性质,根据条件转化为求两平行之间的距离是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设n∈N*,数列{an}满足a2+a3=8,an+1=an+2.
(I)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}•{a}_{n+2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=-x2+2ax+1-a在区间[0,1]上的最大值是3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正项数列{an}的前n项和为Sn,且4Sn=${a}_{n}^{2}$+2an,若数列{bn}满足bn=an•sin$\frac{2nπ}{3}$,{bn}的前n项和为Tn,则T6=$-2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知cosα=$\frac{3}{5}$,cos(α+β)=-$\frac{5}{13}$,且α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b,c,d∈R,给出下列四个命题,其中正确的是(  )
A.若a>b,c>d,则a-d<b-cB.若ac2>bc2,则a>b
C.若c<b<a,且ac<0,则cb2<ab2D.若a>b,则lg(a-b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=|x2-x-a|在x∈(0,1)上存在最大值,则实数a的取值范围是[-$\frac{1}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数y=cos2ωx-sin2ωx(ω>0)的最小正周期是π,则ω=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知Sn为等差数列{an}的前n项和,给出下列两个命题:
命题p:若S3,S9都大于9,则S6大于11
命题q:若S6不小于12,则S3,S9中至少有1个不小于9.
那么,下列命题为真命题的是(  )
A.¬pB.(¬p)∧(¬q)C.p∧qD.p∧(¬q)

查看答案和解析>>

同步练习册答案