精英家教网 > 高中数学 > 题目详情
14.已知Sn为等差数列{an}的前n项和,给出下列两个命题:
命题p:若S3,S9都大于9,则S6大于11
命题q:若S6不小于12,则S3,S9中至少有1个不小于9.
那么,下列命题为真命题的是(  )
A.¬pB.(¬p)∧(¬q)C.p∧qD.p∧(¬q)

分析 由等差数列的前n项和的性质可得:S3,S6-S3,S9-S6成等差数列,即可判断出命题p,q的真假.

解答 解:对于命题p:由等差数列的前n项和的性质可得:S3,S6-S3,S9-S6成等差数列,∴2(S6-S3)=S3+S9-S6,∴3S6=3S3+S9≥3×9+9,∴S6≥12,因此命题p正确;
命题q:由上面可知:3S3+S9=3S6≥3×12=36,因此S3,S9中至少有1个不小于9,是真命题.
那么,下列命题为真命题的是p∧q.
故选:C.

点评 本题考查了等差数列的前n项和的性质、复合命题真假的判定方法、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上一个动点.若点P到直线x-y+2=0的距离大于t恒成立,则实数t的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若△ABC是半径为$\sqrt{5}$的圆O的内接三角形,3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,则$\overrightarrow{OC}$•$\overrightarrow{AB}$为(  )
A.1B.-1C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等比数列{an}中,a3=16,a5=4,则a7=(  )
A.1B.-1C.±1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.实数x,y满足条件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{-2x+3y+5≥0}\end{array}\right.$,则目标函数z=x+2y的最大值为(  )
A.5B.4C.-1D.$\frac{16}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图的茎叶图表示的是甲、乙两人在5天内加工零件的个数,其中一个数字不小心被污损,已知甲的平均数等于乙的平均数,则污损的数字是(  )
A.5B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2-2x-8>0},B={-3,-1,1,3,5},则A∩B=(  )
A.{-1,1,3}B.{-3,-1,1}C.{-3,5}D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若复数z满足(1+2i)•z=|2-i|,则$\overline{z}$(  )
A.1+2iB.$\sqrt{5}$(1-2i)C.$\frac{\sqrt{5}}{5}$(1+2i)D.$\frac{\sqrt{5}}{5}$(1-2i)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题是假命题的是(  )
A.?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.向量$\overrightarrow a$=(-2,1),$\overrightarrow b$=(-3,0),则$\overrightarrow a$在$\overrightarrow b$方向上的投影为2
D.“|x|≤1”是“x<1”的既不充分也不必要条件

查看答案和解析>>

同步练习册答案