精英家教网 > 高中数学 > 题目详情
18.长方形ABCD中,AB=2,BC=1,F是线段DC上一动点,且0<FC<1.将△AFD沿AF折起,使平面AFD⊥平面ABC,在平面ABD内作DK⊥AB于K,设AK=t,则t的值可能为(  )
A.$\frac{4}{3}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 此题的破解可采用二个极端位置法,即对于F位于DC的中点时与随着F点到C点时,分别求出此两个位置的t值即可得到所求的答案.

解答 解:如图,过D作DG⊥AF,垂足为G,连接GK,
∵平面AFD⊥平面ABC,又DK⊥AB,
∴AB⊥平面DKG,
∴AB⊥GK.
容易得到,当F接近E点时,K接近AB的中点,
∵长方形ABCD中,AB=2,BC=1,E为CD的中点,
∴计算可得:AG=$\frac{\sqrt{2}}{2}$,DG=$\frac{\sqrt{2}}{2}$,DK=$\frac{\sqrt{3}}{2}$,KG=$\frac{1}{2}$,
∴t=AK=$\frac{1}{2}$,
当F接近C点时,可得三角形ADG和三角形ADC相似.
∴$\frac{AG}{1}=\frac{1}{\sqrt{5}}$,可解得AG=$\frac{\sqrt{5}}{5}$,
可得三角形AKG和三角形ABC相似.
∴$\frac{\frac{\sqrt{5}}{5}}{\sqrt{5}}=\frac{t}{2}$,解得t=$\frac{2}{5}$,
∴t的取值范围是($\frac{2}{5}$,$\frac{1}{2}$).
故选:B.

点评 考查空间图形的想象能力,及根据相关的定理对图形中的位置关系进行精准判断的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{2x+y≤3}\end{array}\right.$所表示的平面区域的面积为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知tanα=$\frac{3}{4}$,$π<α<\frac{3π}{2}$,则sinα-cosα=$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线的一条渐近线为y-x=0,且过点($\sqrt{5}$,1)
(1)求双曲线的标准方程;
(2)若直线y=kx-1与上述所得双曲线只有一个公共点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如果P:关于x的不等式x2+2ax+4>0对一切 x∈R都成立,q:关于 x 的方程 4x2+4(a-2)x+1=0无实数根,且P与q中有且只有一个是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知α,β是相异两平面,m,n是相异两直线,则下列命题中不正确的是 (  )
A.若m∥n,m⊥α,则n⊥αB.若m⊥α,m⊥β,则α∥β
C.若m∥α,α∩β=n,则m∥nD.若m⊥α,m?β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)的定义域为R,且f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,f(x+1)=f(x-1),则方程f(x)=$\frac{2x+1}{x}$在区间[-3,3]上的所有实根之和为(  )
A.0B.-2C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图某空间几何体的正视图和俯视图分别为边长为2的正方形和正三角形,则该空间几何体的外接球的表面积为(  )
A.$\frac{16π}{3}$B.$\frac{28π}{3}$C.16πD.21π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.焦点在x轴上的椭圆${x^2}-\frac{y^2}{k}=1$的离心率为$\frac{1}{2}$,则焦距为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步练习册答案