精英家教网 > 高中数学 > 题目详情
2.设a,b>0,a+b=7,则$\sqrt{a+3}$+$\sqrt{b+2}$的最大值为2$\sqrt{6}$.

分析 由x2+y2≥2xy,易得($\frac{x+y}{2}$)2≤$\frac{{x}^{2}+{y}^{2}}{2}$,(x,y>0),即可得到$\sqrt{a+3}$+$\sqrt{b+2}$的最大值.

解答 解:由不等式($\frac{x+y}{2}$)2≤$\frac{{x}^{2}+{y}^{2}}{2}$,(x,y>0),
当且仅当x=y取得等号.
则$\sqrt{a+3}$+$\sqrt{b+2}$≤2$\sqrt{\frac{a+3+b+2}{2}}$=2$\sqrt{\frac{7+5}{2}}$=2$\sqrt{6}$.
当且仅当a+3=b+2,即a=3,b=4取得最大值.
故答案为:2$\sqrt{6}$.

点评 本题考查基本不等式的运用:求最值,运用不等式($\frac{x+y}{2}$)2≤$\frac{{x}^{2}+{y}^{2}}{2}$,(x,y>0)是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列命题错误的是(  )
A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0则x2+y2≠0”
B.若命题p:?x0∈R,x02-x0+1≤0,则¬p:?x∈R,x2-x+1>0
C.△ABC中,sinA>sinB是A>B的充要条件
D.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若${x^2}+\frac{1}{2}mx+k$是一个完全平方式,则k=$\frac{1}{16}{m}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a>0,b>0,c>0,设函数f(x)=|x-b|+|x+c|+a,x∈R
(Ⅰ)若a=b=c=1,求不等式f(x)<5的解集;
(Ⅱ)若函数f(x)的最小值为1,证明:$\frac{1}{a+b}$+$\frac{4}{b+c}$+$\frac{9}{c+a}$≥18(a+b+c)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若圆x2+y2-4x-4y-10=0上至少有三个不同的点,到直线l:y=x+b的距离为2$\sqrt{2}$,则b取值范围为(  )
A.(-2,2)B.[-2,2]C.[0,2]D.[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(文科)(1)化简$\frac{tan(π+α)cos(2π+α)sin(α-\frac{3}{2}π)}{cos(-3π+α)sin(3π-α)}$.
(2)已知f(x)=$\frac{1}{2}$sin2x+sinx,求f′(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+bx+c,集合 A={x|f(x)=x}.
(1)当b=-2,c=2时,求集合 A;
(2)当集合 A={1}时,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-1=0},集合B={x|x2-ax+1=0},若集合A与集合B的元素个数相同,则实数a的取值为(  )
A.a>2或a<-2B.a=2C.a=-2D.a=±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.集合A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若集合A∩B=∅,则实数a的取值范围是a<-1或a>3.

查看答案和解析>>

同步练习册答案