精英家教网 > 高中数学 > 题目详情
4.函数Y=$\frac{sinx-cosx}{2cosx}$在点${x_0}=\frac{π}{3}$处的导数等于2.

分析 先根据导数的运算法则求导,再代值计算即可

解答 解:函数Y=$\frac{sinx-cosx}{2cosx}$$\frac{sinx}{2cosx}$-$\frac{1}{2}$
∴Y′=$\frac{cosxcosx+sinsinx}{2co{s}^{2}x}$=$\frac{1}{2co{s}^{2}x}$,
∴点${x_0}=\frac{π}{3}$处的导数为$\frac{1}{2co{s}^{2}\frac{π}{3}}$=2,
故答案为:2.

点评 本题考查了导数的运算法则和导数值得求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.计算或化简:
(1)$lg25+lg4-{({\frac{27}{8}})^{\frac{1}{3}}}+{3^{{{log}_3}2}}+{({\sqrt{2}})^0}$
(2)$\frac{{cos({\frac{π}{2}-α})cos({α+π})tan({α-5π})}}{{cos({α-π})sin({3π-α})sin({-α-π})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若复数$z=\frac{2i}{{{{(1+i)}^3}}}$,则$\overline z$的模的为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$2\sqrt{2}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A(2,-1),C(0,2),$\overrightarrow{AB}=(3,5)$,则$|\overrightarrow{BC}|$=(  )
A.6B.$\sqrt{29}$C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数y=x2-2ax-4,x∈[0,3],(a∈R)
(1)若a=1,求该函数在x∈[0,3]上的最大值和最小值;
(2)若该函数在[0,3]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知x,y为正实数,且x+2y=8,则xy的最大值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定积分${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx的值为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线的渐近线方程为y=±$\frac{1}{2}$x,实轴长为4,则该双曲线的方程$\frac{{x}^{2}}{4}$-y2=1或$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.复数z=2+i的共轭复数是2-i.

查看答案和解析>>

同步练习册答案