精英家教网 > 高中数学 > 题目详情
14.计算或化简:
(1)$lg25+lg4-{({\frac{27}{8}})^{\frac{1}{3}}}+{3^{{{log}_3}2}}+{({\sqrt{2}})^0}$
(2)$\frac{{cos({\frac{π}{2}-α})cos({α+π})tan({α-5π})}}{{cos({α-π})sin({3π-α})sin({-α-π})}}$.

分析 (1)直接由对数的运算性质计算得答案;
(2)直接由三角函数的诱导公式化简计算得答案.

解答 解:(1)$lg25+lg4-{({\frac{27}{8}})^{\frac{1}{3}}}+{3^{{{log}_3}2}}+{({\sqrt{2}})^0}$=$lg(25×4)-(\frac{3}{2})^{3×\frac{1}{3}}+2+1$=2-$\frac{3}{2}+3$=$\frac{7}{2}$.
(2)$\frac{{cos({\frac{π}{2}-α})cos({α+π})tan({α-5π})}}{{cos({α-π})sin({3π-α})sin({-α-π})}}$=$\frac{sinα•(-cosα)•tanα}{-cosα•sinα•sinα}$=$\frac{1}{cosα}$.

点评 本题考查了三角函数的化简求值,考查了三角函数的诱导公式,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合M={x∈N*|-3<x≤5},N={x|x≤-5或x≥5},则M∩(∁UN)等于(  )
A.{1,2,3,4,5}B.{x|-3<x<5}C.{x|-5<x≤5}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是R上的偶函数,若对于x≥0,均有f(x+2)=-f(x),且当x∈[0,2),f(x)=log2(x+1),则f(-2015)+f(2016)等于(  )
A.1+log23B.-1+log23C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=|log3x|,若f(a)=f(b)且a≠b,则$\frac{1}{a}$+$\frac{2}{b}$且的最小值是$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线l斜率的在[-$\sqrt{3}$,$\frac{\sqrt{3}}{3}$]上取值时,倾斜角的范围是[0,$\frac{π}{6}$]∪[$\frac{2π}{3}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点A(4,-3)作直线,斜率为k,如果直线与双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1只有一个公共点,则k的值为(  )
A.0<k<$\frac{3}{4}$B.k=$\frac{3}{4}$C.k=-$\frac{3}{4}$D.k>$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等差数列{an}的前n项和Sn,n∈N*,a2=5,S8=100
(1)求数列{an}的通项公式
(2)设bn=4an+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)的定义域为D,若满足:①f(x)在D内是单调函数;②存在[m,n]⊆D,使f(x)在[m,n]的值域为[2m,2n],那么就称函数f(x)为“倍域函数”.若f(x)=ln(ex+6x+t)是“倍域函数”,则实数t的取值范围是(  )
A.$(-\frac{3}{4}-6ln\frac{3}{2},2-6ln2)$B.(2-6ln2,+∞)
C.$(-\frac{3}{4}-6ln\frac{3}{2},6ln2-2)$D.(-∞,6ln2-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数Y=$\frac{sinx-cosx}{2cosx}$在点${x_0}=\frac{π}{3}$处的导数等于2.

查看答案和解析>>

同步练习册答案