| A. | 1+log23 | B. | -1+log23 | C. | 1 | D. | -1 |
分析 首先根据f(x)是R上的偶函数,可得f(-x)=f(x),知f(-2015)+f(2016),求出函数的周期T=4,利用当x∈[0,2)时,f(x)=log2(x+1)的解析式,进行求解.
解答 解:∵函数f(x)是R上的偶函数,
∴f(-x)=f(x),
又∵对于x≥0都有f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),
∴T=4,
∵当x∈[0,2)时,f(x)=log2(x+1),
∴f(-2015)+f(2016)=f(2015)+f(2016)=f(4×503+3)+f(4×504)
=-f(1)+f(0)=-log22+log21=-1,
故选:D.
点评 此题主要考查偶函数的性质及其周期性,还考查了周期函数的解析式,是一道基础题,计算的时候要仔细.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2) | B. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1) | C. | (-∞,1) | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$∉A | B. | $\sqrt{2}$∈∁sB | C. | $\sqrt{2}$∉A∩B | D. | $\sqrt{2}$∈(∁sA)∩(∁sB) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com