精英家教网 > 高中数学 > 题目详情
17.已知|x-A|<r,求证:|x|<|A|+r.

分析 利用含有两个绝对值符号的不等式的性质,即可证明结论.

解答 证明:∵|x|-|A|≤|x-A|,|x-A|<r,
∴|x|-|A|<r,
∴|x|<|A|+r.

点评 本题考查利用绝对值三角不等式进行不等式的证明,考查观察与变形及推理证明的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.将函数y=sin$\frac{x}{2}$的图象按向量$\overrightarrow{a}$平移后,得到y=cos($\frac{x}{2}$-$\frac{π}{4}$)的图象,则向量$\overrightarrow{a}$的坐标可能为(  )
A.($\frac{π}{2}$,0)B.(-$\frac{π}{2}$,0)C.($\frac{π}{4}$,0)D.(-$\frac{π}{4}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲、乙两人进行射击训练,命中率分别为$\frac{2}{3}$与P,且各次射击互不影响,乙射击2次均未命中的概率为$\frac{1}{25}$.
(1)求乙射击的命中率;
(2)若甲射击2次,乙射击1次,甲、乙两人一共命中次数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=2AB=4,E,F分别在BC,AD上,EF∥AB,现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC.
(1)若BE=1,是否在折叠后的线段AD上存在一点P,且$\overrightarrow{AP}$=λ$\overrightarrow{PD}$,使得CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;
(2)求三棱锥A-CDF的体积的最大值,并求出此时二面角E-AC-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:a1=1,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n+1}$,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}与{bn}均是等差数列,an:b1=bn:a1=4,{an}的前n项的和是{bn}的和的2倍,则两数列的公差d1和d2之比为26:1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若α适合条件sin$\frac{α}{2}$=$\frac{1}{2}$($\sqrt{1+sinα}$+$\sqrt{1-sinα}$),则$\frac{α}{2}$的取值范围是(  )
A.[2kπ,2kπ+$\frac{π}{2}$],k∈ZB.[2kπ+$\frac{π}{2}$,(2k+1)π],k∈Z
C.[2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$],k∈ZD.[2kπ+$\frac{3π}{4}$,2kπ+$\frac{5π}{4}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.九个正实数a1,a2,…,a9构成等比数列,且a1+a2=$\frac{3}{4}$,a3+a4+a5+a6=15,则a7+a8+a9=$\frac{9477}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.比较大小:sin$\frac{π}{7}$<tan$\frac{π}{7}$.

查看答案和解析>>

同步练习册答案