精英家教网 > 高中数学 > 题目详情
12.已知:a1=1,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n+1}$,求an

分析 根据a1=1,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n+1}$,利用叠乘法,即可求an

解答 解:∵a1=1,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n+1}$,
∴n≥2时,an=a1•$\frac{{a}_{2}}{{a}_{1}}$•…$\frac{{a}_{n}}{{a}_{n-1}}$=1•$\frac{2}{3}$•$\frac{3}{4}$•…•$\frac{n}{n+1}$=$\frac{2}{n+1}$,
n=1时,上式也成立,
∴an=$\frac{2}{n+1}$

点评 本题考查数列的通项,考查叠乘法的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.几位大学毕业生筹资50万元创业成绩卓著,创业资金的每月净增长率为5%,且自第一个月底起他们每月捐出相同的资金资助贫困大学生学习,若三年后他们的创业资金翻了一番,试求他们每月的捐资资金是多少万元?(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.试求圆心在点(1,-1)上,并且经过圆上一点A(-3,-4)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.化简$\frac{\sqrt{1-2sin20°cos20°}}{sin20°-\sqrt{1-si{n}^{2}20°}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx,g(x)=ax2-bx(a≠0).
(Ⅰ)当b=0时,求函数h(x)=f(x)-g(x)的单调区间;
(Ⅱ)当b=1时,回答下面两个问题:
(i)若函数y=f(x)与函数y=g(x)的图象在公共点P处有相同的切线.求实数a的值;
(ii)若函数y=f(x)与函数y=g(x)的图象有两个不同的交点M,N.过线段MN的中点作x轴的垂线,分别与f(x),g(x)的图象交于S,T两点.以S为切点作f(x)的切l1,以T为切点作g(x)的切线l2,是否存在实数a,使得l1∥l2,若存在.求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知|x-A|<r,求证:|x|<|A|+r.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A(1,-4),B(-4,-2),C(-3,0),D(0,0),设AC与BD交于点P,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等比数列{an}中,若a3-a1=8,a4-a3=18,则a2=3或-$\frac{96}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点P、Q分别为圆x2+y2=9上的两个动点,M(1,0),PM⊥MQ,则($\overrightarrow{OM}$-$\overrightarrow{OP}$)•($\overrightarrow{PM}$+$\overrightarrow{MQ}$)的最小值是4.

查看答案和解析>>

同步练习册答案