精英家教网 > 高中数学 > 题目详情
7.将函数y=sin$\frac{x}{2}$的图象按向量$\overrightarrow{a}$平移后,得到y=cos($\frac{x}{2}$-$\frac{π}{4}$)的图象,则向量$\overrightarrow{a}$的坐标可能为(  )
A.($\frac{π}{2}$,0)B.(-$\frac{π}{2}$,0)C.($\frac{π}{4}$,0)D.(-$\frac{π}{4}$,0)

分析 由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:函数y=sin$\frac{x}{2}$的图象按向量$\overrightarrow{a}$平移后,得到y=cos($\frac{x}{2}$-$\frac{π}{4}$)的图象,
而把函数y=sin$\frac{x}{2}$的图象项由平移$\frac{π}{2}$个单位,得到y=cos$\frac{1}{2}$(x-$\frac{π}{2}$)=cos($\frac{x}{2}$-$\frac{π}{4}$)的图象
则向量$\overrightarrow{a}$的坐标可能是($\frac{π}{2}$,0),
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设集合P={x|x=a+b$\sqrt{3}$,a、b∈N},对于其中任意两个元素进行加法、减法、除法(除数不能为零)的运算,其结果是否仍属于集合P,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.tan$\frac{π}{8}$-$\frac{1}{tan\frac{π}{8}}$的值是(  )
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知三棱柱ABC=A1B1C1的侧棱BB1⊥底面ABC,其侧视图与俯视图如图所示,AB=BC且AB⊥BC,M,N分别是A1B,A1C1的中点.
(1)求证:MN∥平面BCC1B1
(2)求三棱锥B-A1B1N的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.几位大学毕业生筹资50万元创业成绩卓著,创业资金的每月净增长率为5%,且自第一个月底起他们每月捐出相同的资金资助贫困大学生学习,若三年后他们的创业资金翻了一番,试求他们每月的捐资资金是多少万元?(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1.
(Ⅰ) 请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明;
(Ⅱ)在(Ⅰ)的条件下,求二面角F-BE-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=ex.(x≤1)的切线与坐标轴围城的三角形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在五面体P-ABCD中,CB⊥平面ABP,BC∥AD,AD=2BC=2,且BA=BP=2,BA⊥BP.
(1)点E为棱PD的中点,点F是平面APC上的一点,求直线PD与平面APC所成角的正弦值;
(2)求平面PAD与平面PBD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知|x-A|<r,求证:|x|<|A|+r.

查看答案和解析>>

同步练习册答案