【题目】(本小题共12分)
如图,在直三棱柱中,,点是的中点,
(1)求证:平面;
(2)求证:平面
【答案】(1)见解析;(2)见解析。
【解析】本题考查直线与平面平行的判定,直线与平面垂直的判定,考查学生空间想象能力,逻辑思维能力,是中档题
(Ⅰ)欲证CD⊥平面A1ABB1,可先证平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,满足根据面面垂直的性质;
(Ⅱ)欲证AC1∥平面CDB1,根据直线与平面平行的判定定理可知只需证AC1与平面CDB1内一直线平行,连接BC1,设BC1与B1C的交点为E,连接DE.根据中位线可知DE∥AC1,DE平面CDB1,AC1平面CDB1,满足定理所需条件.
(1)因为是直棱柱,所以平面
又因为平面,所以。
因为中且点是的中点,所以
又因为,所以平面。
(2)连接,交于。点是的中点
在中,是中位线,所以
又因为平面,且平面
所以平面
科目:高中数学 来源: 题型:
【题目】已知f(x)= .
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(x+ )+cosx,x∈R,
(1)求函数f(x)的最大值,并写出当f(x)取得最大值时x的取值集合;
(2)若α∈(0, ),f(α+ )= ,求f(2α)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}为等差数列,且a3=﹣6,a6=0.
(1)求{an}的通项公式.
(2)若等比数列{bn}满足b1=8,b2=a1+a2+a3 , 求{bn}的前n项和公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2﹣c2=ac﹣bc,
(1)求∠A的大小;
(2)求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)满足:f(x)= ,且f(x+2)=f(x),g(x)= ,则方程f(x)=g(x)在区间[﹣5,1]上的所有实根之和为( )
A.﹣5
B.﹣6
C.﹣7
D.﹣8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com