精英家教网 > 高中数学 > 题目详情
3.若集合A=-{0,1,x,3},B={1,x2},A∪B=A,则满足条件的实数x的个数有(  )
A.1个B.2个C.3个D.4个

分析 由A∪B=A说明B是A的子集,然后利用子集的概念分类讨论x的取值.

解答 解:由A∪B=A,所以B⊆A.
又A={0,1,3,x},B={1,x2},
所以x2=0,或x2=3,或x2=x.
x2=0时,集合A违背元素的互异性,所以x2≠0.
x2=3时,x=$±\sqrt{3}$.符合题意.
x2=x时,得x=0或x=1,集合A均违背元素互异性,所以x2≠x.
所以满足条件的实数x的个数有2个.
故选B.

点评 本题考查了并集及其运算,考查了子集的概念,考查了集合中元素的特性,解答的关键是要考虑集合中元素的互异性,是基本的概念题,也是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x-$\frac{1}{x}$+alnx(a∈R).
(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(2)已知g(x)=$\frac{1}{2}$x2+(m-1)x+$\frac{1}{x}$,m≤-$\frac{3\sqrt{2}}{2}$,h(x)=f(x)+g(x),当时a=1,h(x)有两个极值点x1,x2,且x1<x2,求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设0<a<1,已知函数f(x)=$\left\{\begin{array}{l}-xlnx,0<x≤a\\ \frac{1}{e}cos2πx,a<x≤1\end{array}$,若对任意b∈(0,$\frac{1}{e}}$),函数g(x)=f(x)-b至少有两个零点,则a的取值范围是(  )
A.$({0,\frac{1}{e}}]$B.$({0,\frac{3}{4}}]$C.$[{\frac{1}{e},1})$D.$[{\frac{1}{e},\frac{3}{4}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程是$\left\{\begin{array}{l}x=\frac{\sqrt{2}}{2}t\\ y=\frac{\sqrt{2}}{2}t+4\sqrt{2}\end{array}$(t是参数),圆C的极坐标方程为ρ=2cos(θ+$\frac{π}{4}$).
(1)求圆心C的直角坐标;
(2)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右顶点A(2,0)和上顶点B,直线AB被圆T:x2+y2-10x+16=0所截得的弦长为$\frac{{12\sqrt{7}}}{7}$.
(1)求椭圆E的方程;
(2)过椭圆E的右焦点作不过原点的直线l与椭圆E交于M,N两点,直线MA,NA与直线x=3分别交于C,D两点,记△ACD的面积为S,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求方程2${\;}^{{x}^{2}+x}$=8x+1的根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从抛物线Γ:x2=4y外一点P引抛物线Γ的两条切线PA和PB(切点为A,B),分别与x轴相交于C,D,若AB与y轴相交于点Q.
(Ⅰ)求证:四边形PCQD是平行四边形;
(Ⅱ)四边形PCQD能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正三棱锥的底面边长为a,侧棱与底面所成的角为60°,求正三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过抛物线L:x2=2py(p>0)的焦点F且斜率为$\frac{3}{4}$的直线与抛物线L在第一象限的交点为P,且|PF|=5
(1)求抛物线L的方程;
(2)设直线l:y=kx+m与抛物线L交于A(x1,y1),B(x2,y2)两点.
(ⅰ)若k=2,线段AB的垂直平分线分别交y轴和抛物线L于M,N两点,(M,N位于直线l两侧),当四边形AMBN为菱形时,求直线l的方程;
(ⅱ)若直线l过点,且交x轴于点C,且$\overrightarrow{CA}$=a$\overrightarrow{AF}$,$\overrightarrow{CB}$=b$\overrightarrow{BF}$,对任意的直线l,a+b是否为定值?若是,求出a+b的值,若不是,说明理由.

查看答案和解析>>

同步练习册答案