分析 (1)利用函数单调性和导数之间的关系进行求解即可.
(2)求出函数h(x)的表达式,求出函数h(x)的导数,利用函数极值,最值和导数之间的关系进行求解.
解答 解:(1)∵f(x)=x-$\frac{1}{x}$+alnx,
∴f′(x)=1+$\frac{1}{{x}^{2}}$+$\frac{a}{x}$,
∵f(x)在[1,+∞)上单调递增,
∴f′(x)=1+$\frac{1}{{x}^{2}}$+$\frac{a}{x}$≥0在[1,+∞)上恒成立,
∴a≥-(x+$\frac{1}{x}$)在[1,+∞)上恒成立,
∵y=-x-$\frac{1}{x}$在[1,+∞)上单调递减,
∴y≤-2,
∴a≥-2;
(2)h(x)=f(x)+g(x)=lnx+$\frac{1}{2}$x2+mx,其定义域为(0,+∞),
求导得,h′(x)=$\frac{{x}^{2}+mx+1}{x}$,
若h′(x)=0两根分别为x1,x2,则有x1•x2=1,x1+x2=-m,
∴x2=$\frac{1}{{x}_{1}}$,从而有m=-x1-$\frac{1}{{x}_{1}}$,
∵m≤-$\frac{3\sqrt{2}}{2}$,x1<x2,
∴x1∈(0,$\frac{\sqrt{2}}{2}$],
则h(x1)-h(x2)=h(x1)-h($\frac{1}{{x}_{1}}$)=2lnx1+$\frac{1}{2}$(${{x}_{1}}^{2}$-$\frac{1}{{{x}_{1}}^{2}}$)+(-x1-$\frac{1}{{x}_{1}}$)(x1-$\frac{1}{{x}_{1}}$),
令φ(x)=2lnx-$\frac{1}{2}$(x2-$\frac{1}{{x}^{2}}$),x∈(0,$\frac{\sqrt{2}}{2}$].
则[h(x1)-h(x2)]min=φ(x)min,
φ′(x)=-$\frac{({x}^{2}-1)^{2}}{{x}^{3}}$,
当x∈(0,$\frac{\sqrt{2}}{2}$].时,φ′(x)<0,
∴φ(x)在x∈(0,$\frac{\sqrt{2}}{2}$]上单调递减,
φ(x)min=φ($\frac{\sqrt{2}}{2}$)=-ln2+$\frac{3}{4}$,
∴h(x1)-h(x2)的最小值为-ln2+$\frac{3}{4}$.
点评 本题主要考查函数单调性,极值,最值和导数的关系,求函数的导数,利用构造法是解决本题的关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | p>q | B. | p<q | C. | p≥q | D. | p≤q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{2}{π}$,2] | B. | (-∞,$\frac{2}{π}$)∪[2,+∞) | C. | [-$\frac{1}{2}$,$\frac{2}{π}$) | D. | (-∞,-$\frac{1}{2}$]∪($\frac{2}{π}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com