精英家教网 > 高中数学 > 题目详情
7.设$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),$\overrightarrow{a}$=2$\overrightarrow{i}$+3$\overrightarrow{j}$,$\overrightarrow{b}$=k$\overrightarrow{i}$-4$\overrightarrow{j}$,若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k的值为(  )
A.-6B.-3C.3D.6

分析 根据平面向量的坐标表示,$\overrightarrow{a}$⊥$\overrightarrow{b}$,列出方程求出k的值

解答 解:设$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),
∴$\overrightarrow{a}$=2$\overrightarrow{i}$+3$\overrightarrow{j}$=(2,3),$\overrightarrow{b}$=k$\overrightarrow{i}$-4$\overrightarrow{j}$=(k,-4),
∵$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴2k-12=0,
解得k=6,
故选:D

点评 本题考查了平面向量的坐标表示与数量积的运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,矩形OABC的边长OA=a,OC=1,点A,C分别在x,y正半轴上,D在AC上,$\overrightarrow{CD}$=$\frac{1}{4}$$\overrightarrow{CA}$,直线l垂直AC于D,且交直线BC于点E,交y轴于点F.
(1)写出AC中点及D坐标(用a表示);
(2)若直线l交y轴于负半轴,求a的取值范围;
(3)若直线l交y轴于正半轴,且l分矩形两部分的面积之比是2:7,求|CE|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知m、n表示两条不同直线,α表示平面,则下列说法正确的是(  )
A.若m∥α,n∥α,则m∥nB.若m⊥α,m⊥n,则n∥α
C.若m⊥α,n⊥α,则m∥nD.若m∥α,m⊥n,则 n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若集合A含有12个元素,集合B含有8个元素,集合A∩B含有5个元素,则集合A∪B含有的元素个数是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.两个样本,甲:5,4,3,2,1;乙:4,0,2,1,-2.那么样本甲和样本乙的波动大小情况是(  )
A.甲、乙波动大小一样B.甲的波动比乙的波动大
C.乙的波动比甲的波动大D.甲、乙的波动大小无法比较

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若k,m,p为整数,且2×4k-p=4m-p+1,求证:m=p=k.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知U=R,A={x|-3≤x≤4},B={x|x≤a或x>a+3},∁U(A∪B)={x|4<x≤a+3}≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=20.3,b=log${\;}_{\frac{1}{2}}$3,c=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,则(  )
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数y=$\frac{2x+1}{2{x}^{2}+x+2}$,求该函数的最值.

查看答案和解析>>

同步练习册答案