精英家教网 > 高中数学 > 题目详情
6.已知直线2x+my-8=0与圆C:(x-m)2+y2=4相交于A、B两点,且△ABC为等腰直角三角形,则m=2或14.

分析 由三角形ABC为等腰直角三角形,得到圆心C到直线的距离d=rsin45°,利用点到直线的距离公式列出方程,求出方程的解即可得到a的值.

解答 解:∵由题意得到△ABC为等腰直角三角形,
∴圆心C(m,0)到直线2x+my-8=0的距离d=rsin45°,即$\frac{|2m-8|}{\sqrt{4+{m}^{2}}}$=$\sqrt{2}$,
解得:m=2或14,
故答案为2或14.

点评 此题考查了直角与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,等腰直角三角形的性质,以及锐角三角函数定义,熟练掌握公式及性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知四棱锥P-ABCD底面ABCD是矩形,PA⊥平面ABCD,AD=4,AB=2,E,F分别是线段AB,BC的中点.
(1)证明:PF⊥FD;
(2)在PA上找一点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,
①理科做:求二面角P-DE-A的正切值;
②文科做:求点E到平面PFD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在等差数列{an}中,a2+a7=-23,a3+a8=-29
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为2的等比数列,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列推导不正确的是(  )
A.a>b⇒c-a<c-bB.$\frac{c}{a}>\frac{c}{b},c>0⇒a<b$C.$a>b>0,c>d⇒\sqrt{\frac{a}{d}}>\sqrt{\frac{b}{c}}$D.$\root{n}{a}<\root{n}{b}(n∈{N^*})⇒a<b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,圆台的高为4,上、下底面半径分别为3、5,M、N分别在上、下底面圆周上,且<$\overrightarrow{{O}_{2}M}$,$\overrightarrow{{O}_{1}N}$>=120°,则|$\overrightarrow{MN}$|等于(  )
A.$\sqrt{65}$B.5$\sqrt{2}$C.$\sqrt{35}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.高斯是德国著名的数学家,享有“数学王子”之称,以他的名字“高斯”命名的成果达110个,设x∈R,用[x]表示不超过x的最大整数,并用{x}=x-[x]表示x的非负纯小数,则y=[x]称为高斯函数,已知数列{an}满足:${a_1}=\sqrt{3},{a_{n+1}}=[{a_n}]+\frac{1}{{\left\{{a_n}\right\}}},(n∈{N^*})$,则a2017=$3024+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知不等式|x|+|x-3|<x+6的解集为(m,n).
(1)求m,n的值;
(2)若x>0,y>0,nx+y+m=0,求证:x+y≥16xy.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=3Sn+2,n∈N.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{8n}{{a}_{n+1}-{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设ξ服从正态分布N(μ,σ2),则命题
①P(ξ≤x)=P(ξ≥2μ-x)
②P(ξ≤x)+P(ξ≤2μ-x)=1
③P(x1≤ξ≤x2)=P(ξ≤x2)+P(ξ≥2μ-x1
正确的有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案