分析 (Ⅰ)由勾股定理推导出EF⊥BE,EF⊥DE,由此能证明EF⊥平面BDE.
(Ⅱ)以O为原点,OA为x轴,OB为y轴,过O作平面ABCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出二面角B-DF-E的正弦值.
解答 证明:(Ⅰ)∵在菱形ABCD中,∠ABC=60°,AE⊥平面ABCD,CF⊥平面ABCD,AB=AE=2,CF=3,
∴AC=2,EF=$\sqrt{A{C}^{2}+(CF-AE)^{2}}$=$\sqrt{5}$,DF=BF=$\sqrt{C{F}^{2}+B{C}^{2}}$=$\sqrt{13}$,DE=BE=$\sqrt{A{B}^{2}+A{E}^{2}}$=2$\sqrt{2}$,
∴EF2+BE2=BF2,EF2+DE2=DF2,![]()
∴EF⊥BE,EF⊥DE,
又BE∩DE=E,∴EF⊥平面BDE.
解:(Ⅱ)以O为原点,OA为x轴,OB为y轴,过O作平面ABCD的垂线为z轴,建立空间直角坐标系,
B(0,$\sqrt{3}$,0),D(0,-$\sqrt{3}$,0),F(-1,0,3),E(1,0,2),
$\overrightarrow{DF}$=(-1,$\sqrt{3}$,3),$\overrightarrow{DB}$=(0,2$\sqrt{3}$,0),$\overrightarrow{DE}$=(1,$\sqrt{3}$,2),
设平面BDF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=2\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{DF}=-x+\sqrt{3}y+3z=0}\end{array}\right.$,取x=3,得$\overrightarrow{n}$=(3,0,1),
设平面DEF的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DE}=a+\sqrt{3}b+2c=0}\\{\overrightarrow{m}•\overrightarrow{DF}=-a+\sqrt{3}b+3c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,-$\frac{5}{\sqrt{3}}$,2),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{5}{\sqrt{10}•\sqrt{\frac{40}{3}}}$=$\frac{\sqrt{3}}{4}$,
∴二面角B-DF-E的正弦值为$\sqrt{1-(\frac{\sqrt{3}}{4})^{2}}$=$\frac{\sqrt{13}}{4}$.
点评 本题考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\overrightarrow a-\frac{1}{2}\overrightarrow b$ | B. | $-\overrightarrow a+\frac{1}{2}\overrightarrow b$ | C. | $\overrightarrow a-\frac{1}{2}\overrightarrow b$ | D. | $\overrightarrow a+\frac{1}{2}\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com