精英家教网 > 高中数学 > 题目详情
6.在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1=3.该长方体的表面积为(  )
A.4B.8C.12D.16

分析 连结AC,求出AC=2$\sqrt{2}$,从而CC1=1,进而长方体ABCD-A1B1C1D1的表面积为:S=2S正方形ABCD+4${S}_{矩形AD{D}_{1}{A}_{1}}$,由此能求出结果.

解答 解:连结AC,
∵在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1=3,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{4+4}$=2$\sqrt{2}$,
∴CC1=$\sqrt{A{{C}_{1}}^{2}-A{C}^{2}}$=$\sqrt{9-8}$=1,
∴长方体ABCD-A1B1C1D1的表面积为:
S=2S正方形ABCD+4${S}_{矩形AD{D}_{1}{A}_{1}}$
=2×(2×2)+4×(2×1)=16.
故选:D.

点评 本题考查长方体的表面积的求法,是基础题,解题时要认真审题,注意长方体的结构特征的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.函数f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,且当x=$\frac{π}{6}$时f(x)取得最大值3.
(1)求f(x)的解析式及单调增区间;
(2)若x0∈(0,2π],且f(x0)=$\frac{3}{2}$,求x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AC⊥BD于点O,E为线段PB上的点,且BD⊥AE.
(1)求证:PD∥平面AEC;
(2)若BC∥AD,BC=$\sqrt{2}$,AD=2$\sqrt{2}$,PD=3且AB=CD.求PC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知三棱锥S-ABC的三条侧棱两两垂直且SA=SB=SC=1,则该三棱锥的外接球的体积为$\frac{\sqrt{3}}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正三棱锥的体积为9$\sqrt{3}$cm3,高为3cm.则它的侧面积为18$\sqrt{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数a、b是利用计算机生产0~1之间的均匀随机数,设事件A=“(a-1)2+(b-1)2>$\frac{1}{4}$”则事件A发生的概率为(  )
A.1-$\frac{π}{16}$B.$\frac{π}{16}$C.1-$\frac{π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}中,a1=1,d=2,则a10=(  )
A.19B.22C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正方形ABCD 的边长为2,E为BC的中点,则$\overrightarrow{AE}$•$\overrightarrow{BD}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x>1,且x+x-1=3,求下列各式的值;
(1)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$;
(2)x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$;
(3)x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$;
(4)x${\;}^{\frac{3}{2}}$-x${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

同步练习册答案