分析 根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为( $\overrightarrow{AD}$+$\frac{1}{2}\overrightarrow{AB}$)•( $\overrightarrow{AD}$-$\overrightarrow{AB}$),再根据两个向量垂直的性质,运算求得结果.
解答 解:∵已知正方形ABCD的边长为2,E为CD的中点,则 $\overrightarrow{AB}$•$\overrightarrow{AD}$=0,
故 $\overrightarrow{AE}$•$\overrightarrow{BD}$=( $\overrightarrow{AD}$+$\overrightarrow{DE}$)•($\overrightarrow{BA}$+$\overrightarrow{AD}$)=($\overrightarrow{AD}$+$\frac{1}{2}\overrightarrow{AB}$)•($\overrightarrow{AD}$-$\overrightarrow{AB}$)
=$\overrightarrow{AD}$2-$\overrightarrow{AD}$•$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AB}$•$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$2=4+0-0-$\frac{1}{2}$×4=2,
故答案为 2.
点评 本题主要考查两个向量的加减法的法则,向量的数量积的运算,两个向量垂直的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (0,$\frac{4\sqrt{6}}{9}$) | C. | (-∞,-$\frac{4\sqrt{6}}{9}$) | D. | ($\frac{4\sqrt{6}}{9}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com