精英家教网 > 高中数学 > 题目详情
7.在空间直角坐标系O-xyz中,已知A(2,0,0),B(0,2,0),C(0,0,0),P(0,1,$\sqrt{3}$),则三棱锥P-ABC在坐标平面xOz上的正投影图形的面积为$\sqrt{3}$;该三棱锥的最长棱的棱长为2$\sqrt{2}$.

分析 根据题意画出图形,利用空间直角坐标系求出三棱锥P-ABC在坐标平面xOz上的正投影图形的面积;
计算三棱锥P-ABC中各棱长,即可得出结论.

解答 解:
如图所示,空间直角坐标系O-xyz中,A(2,0,0),B(0,2,0),
C(0,0,0),P(0,1,$\sqrt{3}$),
在平面yOz中过点P作PM⊥z轴,垂足为M,
则△ACM是三棱锥P-ABC在坐标平面xOz上的正投影图形,
其面积为S△ACM=$\frac{1}{2}$×2×$\sqrt{3}$=$\sqrt{3}$;
三棱锥P-ABC中,AC=BC=2,AB=2$\sqrt{2}$,
PB=PC=$\sqrt{{1}^{2}{+(\sqrt{3})}^{2}}$=2,
PA=$\sqrt{{PC}^{2}{+AC}^{2}}$=2$\sqrt{2}$;
∴最长棱的棱长为AB=AP=2$\sqrt{2}$.
故答案为:$\sqrt{3}$;2$\sqrt{2}$.

点评 本题考查了空间直角坐标系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AC⊥BD于点O,E为线段PB上的点,且BD⊥AE.
(1)求证:PD∥平面AEC;
(2)若BC∥AD,BC=$\sqrt{2}$,AD=2$\sqrt{2}$,PD=3且AB=CD.求PC与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an}中,a1=1,d=2,则a10=(  )
A.19B.22C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正方形ABCD 的边长为2,E为BC的中点,则$\overrightarrow{AE}$•$\overrightarrow{BD}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=(i-$\frac{1}{i}$)5,则复数z的共轭复数的虚部为(  )
A.32iB.-32iC.32D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在四棱锥P-ABCD中,△PAD为正三角形,平面PAD⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB=2AD=4.
(Ⅰ)求证:平面PCD⊥平面PAD;
(Ⅱ)求三棱锥P-ABC的体积;
(Ⅲ)在棱PC上是否存在点E,使得BE∥平面PAD?若存在,请确定点E的位置并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式|2x-1|≤5的解集为(  )
A.(-∞,-2]B.(2,3]C.[3,+∞)D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x>1,且x+x-1=3,求下列各式的值;
(1)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$;
(2)x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$;
(3)x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$;
(4)x${\;}^{\frac{3}{2}}$-x${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知菱形ABCD中,点A(2,2),B(5,3),对角线AC的方程为y=x,求顶点C、D的坐标.

查看答案和解析>>

同步练习册答案