精英家教网 > 高中数学 > 题目详情
6.已知菱形ABCD中,点A(2,2),B(5,3),对角线AC的方程为y=x,求顶点C、D的坐标.

分析 根据菱形的定义设出C的坐标,求出C的坐标即可,根据相等向量求出D的坐标即可.

解答 解:由题意设C(a,a),
则|AB|=|BC|=$\sqrt{10}$,
故(a-5)2+(a-3)2=10,
解得:a=6,a=2(舍),
故C(6,6),
设D(x,y)由$\overrightarrow{AD}$=$\overrightarrow{BC}$,
得:x-2=1,y-2=3,解得:x=3,y=5,
故D(3,5).

点评 本题考查了向量的应用,考查坐标的运算以及菱形的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在空间直角坐标系O-xyz中,已知A(2,0,0),B(0,2,0),C(0,0,0),P(0,1,$\sqrt{3}$),则三棱锥P-ABC在坐标平面xOz上的正投影图形的面积为$\sqrt{3}$;该三棱锥的最长棱的棱长为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.计算:arccos$\frac{1}{2}$=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ax3-2x2+1,若f(x)存在唯一的零点x0,且x0<0,则a的取值范围为(  )
A.(2,+∞)B.(0,$\frac{4\sqrt{6}}{9}$)C.(-∞,-$\frac{4\sqrt{6}}{9}$)D.($\frac{4\sqrt{6}}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的解析式为f(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知角α的终边过点P(3,4),则$cos(\frac{5π}{2}+α)$=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知O为△ABC的外心,若AC=1,$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且x+2y=1,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的部分图象如图所示,当x=$\frac{π}{12}$时,y取得最大值1,当x=$\frac{7π}{12}$时,取得最小值-1
(1)求ω的值
(2)若$\frac{\sqrt{3}}{2}$<a<1,求方程f(x)=a在区间[0,2π]上的所有实数根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-alnx+x-$\frac{a}{x}$(a为常数)有两个不同的极值点.
(1)求实数a的取值范围;
(2)记f(x)的两个不同的极值点分别为x1,x2,若不等式f(x1)+f(x2)>λ(x1+x22恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案