精英家教网 > 高中数学 > 题目详情
4.已知函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的部分图象如图所示,当x=$\frac{π}{12}$时,y取得最大值1,当x=$\frac{7π}{12}$时,取得最小值-1
(1)求ω的值
(2)若$\frac{\sqrt{3}}{2}$<a<1,求方程f(x)=a在区间[0,2π]上的所有实数根的和.

分析 (1)由条件利用正弦函数的周期性求得ω的值.
(2)根据题意,在区间[0,2π]上,正好包含2个周期,方程sin(2x+$\frac{π}{3}$)=a有4个根,且x1+x2=2×$\frac{π}{12}$,x3+x4=2•(π+$\frac{π}{12}$)=2π+$\frac{π}{6}$,由此求得 x1+x2+x3+x4

解答 解:(1)根据函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的部分图象,
当x=$\frac{π}{12}$时,y取得最大值1,当x=$\frac{7π}{12}$时,取得最小值-1,
∴$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{12}$,∴ω=2.
(2)若$\frac{\sqrt{3}}{2}$<a<1,方程即f(x)=sin(2x+$\frac{π}{3}$)=a,
在区间[0,2π]上,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{13π}{3}$].
函数f(x)=sin(2x+$\frac{π}{3}$)的周期为π,在区间[0,2π]上,
正好包含2个周期,方程sin(2x+$\frac{π}{3}$)=a有4个根,
且x1+x2=2×$\frac{π}{12}$,x3+x4=2•(π+$\frac{π}{12}$)=2π+$\frac{π}{6}$,
∴x1+x2+x3+x4=$\frac{7π}{3}$.

点评 本题主要考查求三角函数的解析式与三角函数的有关基本性质,如函数的对称性,单调性,掌握基本函数的基本性质,是学好数学的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知x>1,且x+x-1=3,求下列各式的值;
(1)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$;
(2)x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$;
(3)x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$;
(4)x${\;}^{\frac{3}{2}}$-x${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知菱形ABCD中,点A(2,2),B(5,3),对角线AC的方程为y=x,求顶点C、D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数y=cos2x的图象向左平移$\frac{π}{4}$个单位长度,再向下平移1个单位长度,所得的图象的对称轴是(  )
A.x=kπ+$\frac{π}{2}$,k∈ZB.x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈ZC.x=2kπ+π,k∈ZD.x=kπ+$\frac{π}{4}$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在四棱锥C-ABCD中,CO⊥平面ABOD,AB∥OD,OB⊥OD,且AB=2OD=12,AD=6$\sqrt{2}$,异面直线CD与AB所成角为30°,点O,B,C,D都在同一个球面上,则该球的半径为(  )
A.3$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{21}$D.$\sqrt{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,角A、B、C所对应的边分别为a,b,c,已知a=$\sqrt{3}$,b=$\sqrt{2}$,A=$\frac{π}{3}$,则B=$\frac{π}{4}$;S△ABC=$\frac{3+\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10…,第n个三角形数为$\frac{{n}^{2}+n}{2}$,记第n个k边行数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式
三角形数;N=(n,3)=$\frac{1}{2}$n2$+\frac{1}{2}$n,正方形数:N=(n,4)=$\frac{2}{2}$n2+0n,五边形数:N=(n,5)=$\frac{3}{2}$n2$-\frac{1}{2}$n,六边形数;N(n,6)=$\frac{4}{2}$n2$-\frac{2}{2}$n…由此推测N(8,8)=176.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知sin α=$\frac{12}{13}$,sin(α-β)=-$\frac{3}{5}$,α,β均为锐角,则sinβ等于(  )
A.$\frac{33}{65}$B.1C.$\frac{63}{65}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),且($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{b}$,则实数m的值为(  )
A.1B.-1C.4D.-4

查看答案和解析>>

同步练习册答案