精英家教网 > 高中数学 > 题目详情
19.如图,在四棱锥C-ABCD中,CO⊥平面ABOD,AB∥OD,OB⊥OD,且AB=2OD=12,AD=6$\sqrt{2}$,异面直线CD与AB所成角为30°,点O,B,C,D都在同一个球面上,则该球的半径为(  )
A.3$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{21}$D.$\sqrt{42}$

分析 首先根据异面直线所成的角得到∠CDO=30°,求出OC,利用补形法得到长方体的对角线长度即为外接球的直径.

解答 解:由条件可知AB∥OD,所以∠CDO为异面直线CD与AB所成角,
故∠CDO=30°,而OD=6,故OC=ODtan30°=2$\sqrt{3}$,
在直角梯形ABOD中,易得OB=6,以OB,OC,OD为相邻的三条棱,
补成一个长方体,则该长方体的外接球半径R即为所求的球的半径,
由(2R)2=(2$\sqrt{3}$)2+62+62=84,故R=$\sqrt{21}$.
故选C.

点评 本题考查了几何体的外接球的半径求法;利用了补形法转化为求长方体的体对角线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在铁路建设中需要确定隧道的长度和隧道两端的施工方向,如图,已测得隧道两端点A、B到某一点C的距离分别为b,a且∠ACB=α,∠ABC=β.(提示:sin75°=$\frac{\sqrt{6}+\sqrt{2}}{4}$)
(1)若a=$\sqrt{3}$-1,b=1,β=75°,求在C点处张角α的大小;
(2)若α=120°,a+b=$\sqrt{3}$,求隧道AB的长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的解析式为f(x)=2sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知O为△ABC的外心,若AC=1,$\overrightarrow{AO}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且x+2y=1,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一次测量中出现正误差和负误差的概率都是$\frac{1}{2}$,在5次测量中恰好2次出现正误差的概率是$\frac{5}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=sin(ωx+$\frac{π}{3}$)(ω>0)的部分图象如图所示,当x=$\frac{π}{12}$时,y取得最大值1,当x=$\frac{7π}{12}$时,取得最小值-1
(1)求ω的值
(2)若$\frac{\sqrt{3}}{2}$<a<1,求方程f(x)=a在区间[0,2π]上的所有实数根的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线C:f(x)=x3-6x2+9x+d,直线l1:y=-3x+b,直线l2:y=k(x-2)+f(2),(其中b,d,k皆为实常数)试分析下列命题:
①d=0时,函数y=f(x)恰有两个零点;
②?d∈R,f(1)+f(3)=2f(2);
③?b∈R,直线l1与曲线C有且仅有一个公共点;
④?d,k∈R,直线l2与曲线C恰有两个不同的公共点.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.lg$\frac{5}{3}$+lg6=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲、乙两选手比赛,设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,若采用3局2胜制,则甲获胜的概率是(  )
A.0.648B.0.6C.0.432D.0.216

查看答案和解析>>

同步练习册答案