分析 △ABC中,由条件利用余弦定理求得cosB的值,△ABD中,再由余弦定理求得中线AD的值.
解答
解:如图,
△ABC中,已知AB=4,AC=7,BC=9,设BC的中点为D,则AD为BC边上的中线长.
△ABC中,由余弦定理可得cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{16+81-49}{2×4×9}$=$\frac{2}{3}$.
△ABD中,由余弦定理可得AD2=AB2+BD2-2AB•BD•cosB=16+$(\frac{9}{2})^{2}$-2×$4×\frac{9}{2}×\frac{2}{3}$=$\frac{49}{4}$,
∴BD=$\frac{7}{2}$.
故答案为:$\frac{7}{2}$.
点评 本题主要考查余弦定理的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| 围棋社 | 戏剧社 | 书法社 | |
| 高中 | 45 | 30 | a |
| 初中 | 15 | 10 | 20 |
| A. | 130人 | B. | 140人 | C. | 150人 | D. | 160人 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{4}{9}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a$≤-\frac{1}{2}$ | B. | a$≤-\frac{3}{2}$ | C. | a$≥\frac{1}{2}$ | D. | a$<\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com