精英家教网 > 高中数学 > 题目详情

【题目】已知是两条不同的直线, 是两个不同的平面,则下列命题正确的是

A. ,则 B. ,则

C. ,则 D. ,则

【答案】D

【解析】分析:平行一个平面的两条直线有三种位置关系:相交、异面、平行,排除A;两面垂

直,平行其中一个平面的直线与该平面有三种位置关系:平行、相交、在面内,故

排除B;平行与一条直线的两个平面有两种位置关系:平行、相交,故排除C;由

直线与平面垂直和平面与平面垂直的判定可知选项D正确。

详解:对于选项A,,则两直线可能平行相交异面A

对于选项B,,则直线与平面可能平行、线在面内、相交,故

B错;

对于选项C,,则两平面可能平行、相交,故C错;

对于选项D,由平面与平面垂直的判定定理可知D正确

故选D。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若|f(x)|≥ax,则a的取值范围是(
A.(﹣∞,0]
B.(﹣∞,1]
C.[﹣2,1]
D.[﹣2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求的单调区间;

(Ⅱ)当时,求函数在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线与曲线有两个不同的交点,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若将其图象向右平移 个单位后得到的图象关于原点对称,则函数f(x)的图象(
A.关于直线x= 对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于点( ,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来。某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图。

(1)试求这40人年龄的平均数、中位数的估计值;

(2)(i)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;

(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:其中x是仪器的月产量.

(1)将利润表示为月产量的函数;

(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆关于直线对称,圆心在第二象限,半径为.

(1)求圆的方程;

(2)直线与圆相切,且在轴、轴上的截距相等,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=Asin(A>0,>0,<)在处取得最大值2,其图象与x轴的相邻两个交点的距离为

(1)求的解析式;

(2)求函数 的值域。

查看答案和解析>>

同步练习册答案