精英家教网 > 高中数学 > 题目详情

【题目】据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小速度越快,单位是MIPS

测试1

测试2

测试3

测试4

测试5

测试6

测试7

测试8

测试9

测试10

测试11

测试12

品牌A

3

6

9

10

4

1

12

17

4

6

6

14

品牌B

2

8

5

4

2

5

8

15

5

12

10

21

分别表示第次测试中品牌A和品牌B的测试结果,记

)求数据的众数;

)从满足的测试中随机抽取两次,求品牌A的测试结果恰好有一次大于品牌B的测试结果的概率

(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.

【答案】4 ;( ;(本题为开放问题,答案不唯一.

【解析】试题分析:(1)将自变量的取值情况写出来,根据众数的概念可得结果;(2)将题目中满足从满足的测试中随机抽取两次的事件次数数出来,满足品牌A的测试结果恰好有一次大于品牌B的测试结果的次数数出来,两个数据作比即可;(3可以从题目中的条件中,从多个角度下结论,只要解释的有道理均可得分。

解析:

(Ⅰ)

1

2

4

6

2

4

4

2

1

6

4

7

所以等于12次, =23次, =44次, =62次, =71次,

则数据的众数为4

设事件D=“品牌的测试结果恰有一次大于品牌的测试结果”.

满足的测试共有4次,其中品牌的测试结果大于品牌的测试结果有2次即测试3和测试7不妨用MN表示.品牌的测试结果小于品牌的测试结果有2次即测试6和测试11不妨用PQ表示.从中随机抽取两次,共有MN,MP,MQ,NP,NQ,PQ六种情况,其中事件D发生,指的是MP,MQ,NP,NQ四种情况.

.

(Ⅲ)本题为开放问题,答案不唯一,在此给出评价标准,并给出可能出现的答案情况,阅卷时按照标准酌情给分.

给出明确结论,1分,结合已有数据,能够运用以下两个标准中的任何一个陈述得出该结论的理由,2分.

可能出现的作答情况举例,及对应评分标准如下:

结论一:,品牌处理器对含有文字与表格的文件的打开速度快一些,品牌处理器对含有文字与图片的文件的打开速度快一些。

理由如下:从前6次测试(打开含有文字与表格的文件)来看,对于含有文字与表格的相同文件,品牌的测试有两次打开速度比品牌(数值小),品牌有四次比品牌快,从后6次测试(打开含有文字与图片的文件)来看,对于含有文字与图片的相同文件,品牌有四次打开速度比品牌数值小).

结论二:从测试结果看,这两种国产品牌处理器的文件的打开速度结论:品牌打开文件速度快一些

理由如下:品牌处理器对文件打开的测试结果的平均数估计为,品牌处理器对文件打开的测试结果的平均数估计为所以品牌打开文件速度快一些.(且品牌方差较小

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆,直线.

(1)以原点为极点, 轴正半轴为极轴建立极坐标系,求圆和直线的交点的极坐标;

(2)若点为圆和直线交点的中点,且直线的参数方程为 (为参数),求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

(1)求的值;

(2)若对于任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)经过椭圆的右焦点的直线与椭圆交于两点,分别为椭圆的左、右顶点,记的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·石家庄一检]已知函数

(1)若,求函数的图像在点处的切线方程;

(2)若函数有两个极值点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求曲线的普通方程,并说明其表示什么轨迹;

(2)若直线的极坐标方程为,试判断直线与曲线的位置关系,若相交,请求出其弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二进制规定:每个二进制数由若干个0、1组成,且最高位数字必须为1.若在二进制中,是所有位二进制数构成的集合,对于表示对应位置上数字不同的位置个数.例如当,当.

(1)令,求所有满足,且的个数;

(2)给定,对于集合中的所有,求的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与椭圆相交于两点,与轴, 轴分别相交于点和点,且,点是点关于轴的对称点, 的延长线交椭圆于点,过点分别做轴的垂线,垂足分别为.

(1)椭圆的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上,求椭圆的方程;

(2)当时,若点平分线段,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧棱垂直于底面的中点,平行于平行于面.

(1)求的长;

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案