| A. | 7π | B. | 19π | C. | $\frac{7}{6}$$\sqrt{7}$π | D. | $\frac{19}{6}$$\sqrt{19}$π |
分析 三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.
解答 解:根据题意可知三棱锥B-ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,
三棱柱中,底面△BDC,BD=CD=1,BC=$\sqrt{3}$,∴∠BDC=120°,∴△BDC的外接圆的半径为$\frac{1}{2}×\frac{\sqrt{3}}{sin120°}$=1
由题意可得:球心到底面的距离为$\frac{\sqrt{3}}{2}$,
∴球的半径为r=$\sqrt{\frac{3}{4}+1}$=$\frac{\sqrt{7}}{2}$.
外接球的表面积为:4πr2=7π
故选:A.
点评 本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com