精英家教网 > 高中数学 > 题目详情
为了得到函数y=sin
1
3
x的图象,只需把函数y=sinx图象上所有的点的(  )
A、横坐标伸长到原来的3倍,纵坐标不变
B、横坐标缩小到原来的
1
3
倍,纵坐标不变
C、纵坐标伸长到原来的3倍,横坐标不变
D、纵坐标伸长到原来的
1
3
倍,横坐标不变
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答: 解:把函数y=sinx图象上所有的点的横坐标伸长到原来的3倍,纵坐标不变,可得函数y=sin
1
3
x的图象,
故选:A.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log
1
2
1-kx
x-1
为奇函数
(1)求常数k的值;
(2)设h(x)=
1-kx
x-1
,证明函数y=h(x)在(1,+∞)上是减函数;
(3)若函数g(x)=f(x)-(
1
2
)x
+m,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

掷两枚骰子,记事件A为“向上的点数之和为n”.
(1)求所有n值组成的集合;
(2)n为何值时事件A的概率P(A)最大?最大值是多少?
(3)设计一个概率为0.5的事件(不用证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a-
2
2x+1
,x∈R,a为常数.
(1)当a=1时,判断f(x)的奇偶性;
(2)求证:f(x)是R上的增函数;
(3)在(1)的条件下,若对任意t∈[1,2]有f(m2t-2)+f(2t)≥0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机取A,B,C三个班进行随班听课,要求每个班级至少有一位评估员.
(1)求甲、乙同时去A班听课的概率;
(2)设随机变量ξ为这五名评估员去C班听课的人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的周长为
2
+1,且sinA+sinB=
2
sinc,角A、B、C所对的边为a、b、c.
(1)求AB的长;
(2)若△ABC的面积为
1
6
sinc求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(
1
9
x-2a(
1
3
x+3.x∈[-1,1].
(1)若f(x)的最小值记h(a),求h(a)的解析式;
(2)是否存在实数m,n同时满足以下条件:①log3m>log3n>1;②当h(a)的定义域为[n,m]时,值域为[n2,m2];若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}是等差数列,则“a1<a2”是“数列{an}为递增数列”(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、不充分也不必要条件

查看答案和解析>>

同步练习册答案