精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3-x2+bx+2(a,b∈R)在区间(-∞,0)及(4,+∞)上都是增函数,在区间(0,4)上是减函数.
(Ⅰ)求a,b的值;
(Ⅱ)求曲线y=f(x)在x=1处的切线方程.
分析:(Ⅰ)根据题意知函数f(x)=ax3-x2+bx+2(a,b∈R)在区间(-∞,0)及(4,+∞)上都是增函数,在区间(0,4)上是减函数.所以0和4为函数的驻点,即f′(0)=0,f′(4)=0得到a与b;
(Ⅱ)求出f′(x)在x=1时的函数值f′(1)而f(1)=
7
6
得到切点坐标,写出切线方程化简即可.
解答:解:(I)∵f'(x)=3ax2-2x+b,
又f(x)在区间(-∞,0)及(4,+∞)上都是增函数,在区间(0,4)上是减函数,
∴f'(0)=0,b=0.
f′(4)=0,a=
1
6
.

(II)∵f(x)=
1
6
x3-x2+2,得f′(x)=
1
2
x2-2x.

当x=1时,f′(1)=-
3
2
.

此时y=f(1)=
7
6
.

即切线的斜率为-
3
2
,切点坐标为(1,
7
6
).
所求切线方程为9x+6y-16=0.
点评:考查学生利用导数研究函数的单调性能力,以及利用导数研究曲线上某点的切线方程的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案