精英家教网 > 高中数学 > 题目详情
7.将三个标有A,B,C的小球随机放入编号为1,2,3,4的四个盒子中,则1号盒子内没有球的不同放法的总数为(  )
A.27B.37C.64D.81

分析 根据题意,要求1号盒子内没有球,即三个小球全部放进2、3、4号盒子,进而分析A,B,C的小球放进小盒的情况数目,有分步计数原理计算可得答案.

解答 解:根据题意,要求1号盒子内没有球,即三个小球全部放进2、3、4号盒子,
分析可得:A球可以放进三个盒子中任意1个,即有3种选择方法;
同理,B、C球也有3种选择方法,
则不同的放法有3×3×3=27种;
故选:A.

点评 本题考查分步计数原理的运用,解题的关键在于转化问题,即转化为将三个小球全部放进2、3、4号盒子的问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知抛物线y2=4x的焦点F与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点重合,它们在第一象限内的交点为P,且PF与x轴垂直,则椭圆的离心率为(  )
A.$\sqrt{3}-\sqrt{2}$B.$\sqrt{2}-1$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+({a+1})x+2a,({x>0})\\{log_a}({x+1})+1,({-1<x≤0})\end{array}\right.$,(a<0,a≠1),若函数y=|f(x)|在$[{-\frac{1}{3},+∞})$上单调递增,且关于x的方程|f(x)|=x+3恰有两个不同的实根,则a的取值范围为(  )
A.$[{\frac{3}{2},2})$B.$({1,\frac{3}{2}}]∪\left\{{2,6}\right\}$C.{2,6}D.$[{\frac{3}{2},\frac{5}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,且α+β∈($\frac{7π}{4}$,2π),α-β∈($\frac{3π}{4}$,π),求cos2α和cos2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若圆x2+y2-2x-2y=0上至少有三个不同点到直线l:y=kx的距离为$\frac{{\sqrt{2}}}{2}$,则直线l的倾斜角的取值范围是(  )
A.[15°,45°]B.[15°,75°]C.[30°,60°]D.[0°,90°]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C的方程为:x2+y2-4x+3=0.直线l的方程为2x-y=0,点P在直线l上
(1)若Q(x,y)在圆C上,求$\frac{y+3}{x}$的范围;
(2)若过点P作圆C的切线PA,PB切点为A,B.求证:经过P,A,C,B四点的圆必过定点$({\frac{2}{5},\frac{4}{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图直三棱柱ABC-A'B'C'中,△ABC为边长为2的等边三角形,AA'=4,点E、F、G、H、M分别是边AA'、AB、BB'、A'B'、BC的中点,动点P在四边形EFGH内部运动,并且始终有MP∥平面ACC'A',则动点P的轨迹长度为(  )
A.2B.C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.侧面都是直角三角形的正三棱锥,底面边长为a时,该三棱锥的全面积是(  )
A.$\frac{3+\sqrt{3}}{4}$a2B.$\frac{3}{4}$a2C.$\frac{3+\sqrt{3}}{2}$a2D.$\frac{6+\sqrt{3}}{4}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sinθ>0且cosθ<0,则角θ的终边所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案