【题目】已知椭圆的左、右焦点分别为、,是椭圆上一动点(与左、右顶点不重合).已知的面积的最大值为,椭圆的离心率为.
(1)求椭圆的方程;
(2)过的直线交椭圆于、两点,过作轴的垂线交椭圆与另一点(不与、重合).设的外心为,求证为定值.
【答案】(1);(2)证明见解析.
【解析】
(1)由已知条件得出关于、、的方程组,求出、的值,进而可得出椭圆的方程;
(2)由题意可知直线的斜率存在,可设直线的方程为,将直线的方程与椭圆的方程联立,列出韦达定理,利用弦长公式求出,利用线段和的垂直平分线的交点得出点的坐标,进而得出,再对进行化简即可.
(1)的面积的最大值为,
由已知条件得,解得,因此,椭圆的方程为;
(2)由题意可知,直线的斜率存在,且不为零,易知点,
设直线的方程为,设点、,可知点,
联立,消去得,
由韦达定理得,,
由弦长公式得 ,
,,
所以,线段的中点为,
则线段的垂直平分线的方程为,即,
线段的垂直平分线为轴,在直线方程中,令,得.
则点,,
因此,(定值).
科目:高中数学 来源: 题型:
【题目】在某单位的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以x(单位:个,)表示面包的需求量,T(单位:元)表示利润.
(1)求食堂面包需求量的平均数;
(2)求T关于x的函数解析式;
(3)根据直方图估计利润T不少于100元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展.下表是2019年我国某地区新能源乘用车的前5个月销售量与月份的统计表:
月份代码 | 1 | 2 | 3 | 4 | 5 |
销售量(万辆) | 0.5 | 0.6 | 1 | 1.4 | 1.5 |
(1)利用线性相关系数判断与的线性相关性,并求出线性回归方程
(2)根据线性回归方程预报2019年6月份的销售量约为多少万辆?
参考公式:,;回归直线:.
,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆.
(1)若椭圆的离心率为,求的值;
(2)若过点任作一条直线与椭圆交于不同的两点,在轴上是否存在点,使得, 若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解高一年级学生的智力水平,某校按1:10的比例对700名高一学生按性别分别进行“智力评分”抽样调查,测得“智力评分”的频数分布表如表1、表2所示.
表1:男生“智力评分”频数分布表
智力评分/分 |
| |||||
频数 | 2 | 5 | 14 | 13 | 4 | 2 |
表2:女生“智力评分”频数分布表
智力评分/分 | ||||||
频数 | 1 | 7 | 12 | 6 | 3 | 1 |
(1)求高一年级的男生人数,并完成下面男生“智力评分”的频率分布直方图;
(2)估计该校高一年级学生“智力评分”在内的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(请写出式子在写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内:
(1)共有多少种方法?
(2)若每个盒子不空,共有多少种不同的方法?
(3)恰有一个盒子不放球,共有多少种放法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋内有3个不同的红球,4个不同的白球
(1)从中任取3个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记2分,取一个白球记1分,从中任取4个球,使总分不少于6分的取法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆盘上有一指针,开始时指向圆盘的正上方.指针每次顺时针方向绕圆盘中心转动一角,且,经2004次旋转,第一次回到了其初始位置,即又指向了圆盘的正上方.试问:有多少个可能的不同值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com