精英家教网 > 高中数学 > 题目详情

【题目】(请写出式子在写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内:

1)共有多少种方法?

2)若每个盒子不空,共有多少种不同的方法?

3)恰有一个盒子不放球,共有多少种放法?

【答案】(1)256(2)(3)

【解析】

1)每个球都有4种方法,根据分步计数原理可得答案;

(2)由题意每个盒子不空,故每个盒子各一个,可得答案;

(3)由题意可从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,由分步计数原理可得答案.

解:(1)每个球都有4种方法,故有4×4×4×4256种,

2)每个盒子不空,共有不同的方法,

3)四个不同的小球放入编号为1234的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,

4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有种不同的放法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知顶点是坐标原点的抛物线的焦点轴正半轴上,圆心在直线上的圆轴相切,且关于点对称.

(1)求的标准方程;

(2)过点的直线交于,与交于求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着汽车消费的普及,二手车流通行业得到迅猛发展.某汽车交易市场对2017 年成交的二手车的交易前的使用时间(以下简称“使用时间”)进行统计,得到如图1所示的频率分布直方图,在图1对使用时间的分组中,将使用时间落入各组的频率视为概率.

(1)若在该交易市场随机选取3辆2017年成交的二手车,求恰有2辆使用年限在的概率;

(2)根据该汽车交易市场往年的数据,得到图2所示的散点图,其中 (单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.

①由散点图判断,可采用作为该交易市场二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

试选用表中数据,求出关于的回归方程;

②该汽车交易市场拟定两个收取佣金的方案供选择.

甲:对每辆二手车统—收取成交价格的的佣金;

乙:对使用8年以内(含8年)的二手车收取成交价格的的佣金,对使用时间8年以上(不含 8年)的二手车收取成交价格的的佣金.

假设采用何种收取佣金的方案不影响该交易市场的成交量,根据回归方程和图表1,并用,各时间组的区间中点值代表该组的各个值.判断该汽车交易市场应选择哪个方案能获得更多佣金.

附注:

于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:经过点,离心率为.

(1)求椭圆的方程;

(2)过点的直线交椭圆于两点,为椭圆的左焦点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了推动数学教学方法的改革,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班各人,甲班按原有模式教学,乙班实施教学方法改革,经过一年的教学,将甲、乙两个班学生一年来的数学成绩取整数,绘制成如下茎叶图,规定不低于分(百分制)为优秀,甲班同学成绩的中位数为.

(1)求的值和乙班同学成绩的众数;

(2)完成表格,若有以上的把握认为“数学成绩优秀与教学改革有关”的话,那么学校将扩大教学改革面,请问学校是否要扩大教学改革面?说明理由.

甲班

乙班

合计

优秀人数

不优秀人数

合计

附:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.

(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;

(2)若曲线与直线相交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若对任意都有成立则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】约定乒乓球比赛无平局且实行胜制,甲、乙二人进行乒乓球比赛,甲每局取胜的概率为

1)试求甲赢得比赛的概率;

2)当时,胜者获得奖金元,在第一局比赛甲获胜后,因特殊原因要终止比赛.试问应当如何分配奖金最恰当?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是,且每题正确完成与否互不影响.

(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;

(2)请分析比较甲、乙两人谁的面试通过的可能性较大?

查看答案和解析>>

同步练习册答案