精英家教网 > 高中数学 > 题目详情
6.已知等差数列{an}的公差d>1,前10项和S10=100,{bn}为等比数列,公比为q,且q=d,b1=a1,b2=2
(1)求an和bn
(2)设${c_n}=\frac{{{a_n}+1}}{{4{b_n}}}$,求数列{cn}的前n项和Tn

分析 (1)由S10=100,可得10a1+$\frac{10×9}{2}$d=100,2a1+9d=20.由{bn}为等比数列,公比为q,且q=d,b1=a1,b2=2,∴a1d=2,解得a1,d.
(2)${c_n}=\frac{{{a_n}+1}}{{4{b_n}}}$=$\frac{n}{{2}^{n}}$,利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)∵S10=100,∴10a1+$\frac{10×9}{2}$d=100,∴2a1+9d=20.
∵{bn}为等比数列,公比为q,且q=d,b1=a1,b2=2,∴a1d=2,
解得a1=1,d=2.∴an=2n-1.
∴b1=1,q=2,bn=2n-1
(2)${c_n}=\frac{{{a_n}+1}}{{4{b_n}}}$=$\frac{n}{{2}^{n}}$,
∴数列{cn}的前n项和Tn=$\frac{1}{2}+\frac{2}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}$+$\frac{2}{{2}^{3}}$+$\frac{3}{{2}^{4}}$+…+$\frac{n-1}{{2}^{n}}$+$\frac{n}{{2}^{n+1}}$.
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=1-$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$.
∴Tn=2-$\frac{2+n}{{2}^{n}}$.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知命题p:“等轴双曲线的渐近线互相垂直”;命题q:“直线l与抛物线C只有一个公共点,则l与C相切”,下列结论正确的是(  )
A.p∧q为真B.p∨q为假C.p∧(¬p)为真D.(¬p)∨q为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆心C在抛物线y2=4x上且与准线相切,则圆C恒过定点(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一个直角梯形上底、下底和高之比为$2:4:\sqrt{5}$,将此直角梯形以垂直于底的腰为轴旋转一周形成一个圆台,求这个圆台上底面积、下底面积和侧面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四个命题:
①“若 xy=0,则x=0且y=0”的逆否命题;
②“若m>2,则不等式x2-2x+m>0的解集为R”;
③若F1、F2是定点,|F1F2|=7,动点M满足|MF1|+|MF2|=7,则M的轨迹是椭圆;
④若{a,b,c}为空间的一组基底,则{a+b,b+c,c+a}构成空间的另一组基底;
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列an=$\left\{{\;}\right.\begin{array}{l}{3,n=1}\\{{2^{n-1}},n≥2}\end{array}$,Sn是该数列的前n项和,若Sn能写成tp(t,p∈N*且t>1,p>1)的形式,则称Sn为“指数型和”.则{Sn}中是“指数型和”的项的序号和为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的东北方向,则货轮的速度为(  )
A.20($\sqrt{2}$+$\sqrt{6}$)海里/时B.20($\sqrt{6}$-$\sqrt{2}$)海里/时C.20($\sqrt{3}$+$\sqrt{6}$)海里/时D.20($\sqrt{6}$-$\sqrt{3}$)海里/时

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共线向量,$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=-$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=λ$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,且A,B,D三点共线,则实数λ等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f(3)的x取值集合是(-1,2).

查看答案和解析>>

同步练习册答案