精英家教网 > 高中数学 > 题目详情
2.已知集合A={x|$\frac{1}{x}$≤1},集合B={x|$\sqrt{x-1}$<1},则(  )
A.A?BB.A?BC.A∩B=AD.A∩B={x|1≤x≤2}

分析 先化简集合A,B,再判断集合A,B的关系.

解答 解:A={x|$\frac{1}{x}$≤1}=(-∞,0)∪[1,+∞),集合B={x|$\sqrt{x-1}$<1}=[1,2),
∴A?B,
故选:B

点评 本题考查了集合的基本关系和集合的交集运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数$y=\sqrt{1-{{(\frac{1}{2})}^x}}$的定义域为集合A,函数$y=\frac{1}{{{{log}_3}(3x-2)}}$的定义域为集合B.
(1)求集合A,B;
(2)求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知一条曲线C在y轴右边,C上每一点到点$F(\frac{1}{4}\;,\;\;0)$的距离减去它到y轴距离的差都是$\frac{1}{4}$.点A,B在曲线C上且位于x轴的两侧,$\overrightarrow{OA}•\overrightarrow{OB}$=2(其中O为坐标原点).
(Ⅰ)求曲线C的方程;
(Ⅱ)证明:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.y=sinx(0≤x≤2π)与x轴所围成的图形面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的S为(  )
A.22013-1B.$\frac{1}{3}({2^{2014}}-1)$C.$\frac{1}{3}({2^{2013}}-1)$D.22014-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:3+3=5,命题q:6>3,则下列说法正确的是(  )
A.p∧q为真,p∨q为假B.p∧q为假,¬p为假C.p∨q为真,¬q为假D.p∨q为假,¬p为真

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[60,70)内的汽车辆数大约是(  )
A.8B.80C.65D.70

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,空间几何体ADE-BCF中,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面MDF,并说明理由;
(2)在(1)的条件下,平面MDF将几何体ADE-BCF分成两部分,求空间几何体M-DEF与空间几何体ADM-BCF的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知F1,F2为椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左、右焦点,M为椭圆上动点,有以下四个结论:
①|MF2|的最大值大于3;
②|MF1|•|MF2|的最大值为4;
③∠F1MF2的最大值为60°;
④若动直线l垂直y轴,交此椭圆于A、B两点,P为l上满足|PA|•|PB|=2的点,则点P的轨迹方程为$\frac{x^2}{2}+\frac{{2{y^2}}}{3}=1$或$\frac{x^2}{6}+\frac{{2{y^2}}}{9}=1$.
以上结论正确的序号为②③④.

查看答案和解析>>

同步练习册答案