精英家教网 > 高中数学 > 题目详情
11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若存在圆心在双曲线的一条渐近线上的圆,与另一条渐近线及x轴均相切,则双曲线的离心率为2.

分析 不妨设圆心在双曲线一条渐近线y=$\frac{b}{a}x$上,设出C的坐标,由C到x轴的距离等于到直线y=-$\frac{b}{a}x$的距离列式求得双曲线的离心率.

解答 解:如图,
双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的两条渐近线方程分别为y=-$\frac{b}{a}x$和y=$\frac{b}{a}x$,
设圆C的圆心C(${x}_{0},\frac{b}{a}{x}_{0}$),
由题意可知,C到x轴的距离等于C到直线y=-$\frac{b}{a}x$的距离,
则$|\frac{b}{a}{x}_{0}|=\frac{|b{x}_{0}+a•\frac{b}{a}{x}_{0}|}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{|2b{x}_{0}|}{c}$,
即$\frac{b}{a}=\frac{2b}{c}$,
∴$\frac{c}{a}=e=2$.
故答案为:2.

点评 本题考查双曲线的简单性质,考查了点到直线距离公式的应用,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:
月平均气温x(℃)17 1382
月销售量y(件) 24334055
由表中数据算出线性回归方程$\stackrel{∧}{y}$=-2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为10件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.随机变量ξ的概率分布由如表给出:
x 7 8 9 10
 P(ξ=x) 0.3 0.35 0.20.1
则该随机变量ξ的均值是7.7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列方程的解集
(1)2sin2x-4sinxcosx+4cos2x=1
(2)4cos2x-2sinxcosx-1=0
(3)cos2x-4sin2x=sin2x-2cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若从4名男生和3名女生中选两人参加会议,要求女生必须有人参加,则不同的选法有15种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数a,b,c.(  )
A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100
B.若|a2+b+c|+|a2+b-c|≤1,则a2+b2+c2<100
C.若|a+b+c2|+|a+b-c2|≤1,则a2+b2+c2<100
D.若|a2+b+c|+|a+b2-c|≤1,则a2+b2+c2<100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对任意两个非零的平面向量$\overrightarrow{α}$和$\overrightarrow{β}$,定义运算$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{\overrightarrow{α}•\overrightarrow{β}}{\overrightarrow{β}•\overrightarrow{β}}$,现有如下四个命题:
①$\overrightarrow{α}$?$\overrightarrow{β}$=$\overrightarrow{β}$?$\overrightarrow{α}$;
②$\overrightarrow{α}$=(1,2),$\overrightarrow{β}$=(1,1),则$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{3}{2}$;
③若0<|$\overrightarrow{α}$|<|$\overrightarrow{β}$|,$\overrightarrow{α}$与$\overrightarrow{β}$的夹角θ∈[$\frac{π}{4}$,$\frac{π}{2}$),则$\overrightarrow{α}$?$\overrightarrow{β}$∈(0,$\frac{\sqrt{2}}{2}$];
④若|$\overrightarrow{α}$|≥|$\overrightarrow{β}$|>0,$\overrightarrow{α}$与$\overrightarrow{β}$的夹角θ∈(0,$\frac{π}{4}$),且$\overrightarrow{α}$?$\overrightarrow{β}$和$\overrightarrow{β}$?$\overrightarrow{α}$都在集合{$\frac{n}{2}$|n∈Z}上,则$\overrightarrow{α}$?$\overrightarrow{β}$=$\frac{3}{2}$.
其中正确命题的序号是②④(把所有正确命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在△ABC中,∠B=60°,a=3,b=$\sqrt{19}$.
(1)求c的大小;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若长方体的一个顶点上三条棱长分别是1、1、2,且它的八个顶点都在同一球面上,则这个球的体积是(  )
A.B.$\sqrt{6}π$C.D.12π

查看答案和解析>>

同步练习册答案