精英家教网 > 高中数学 > 题目详情
已知实数x,y满足
2x-y+6≥0
x+y≥0
x≤2
,若目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,则实数m的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,由z=-mx+y的最大值为-2m+10,即当目标函数经过点(2,10)时,取得最大,当经过点(2,-2)时,取得最小值,利用数形结合确定m的取值范围.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由目标函数z=-mx+y得y=mx+z,
则直线的截距最大,z最大,直线的截距最小,z最小.
∵目标函数z=-mx+y的最大值为-2m+10,最小值为-2m-2,
∴当目标函数经过点(2,10)时,取得最大,
当经过点(2,-2)时,取得最小值,
∴目标函数z=-mx+y的目标函数的斜率m满足比x+y=0的斜率大,比2x-y+6=0的斜率小,
即-1≤m≤2,
故答案为:[-1,2].
点评:本题主要考查线性规划的应用,结合目标函数的几何意义,确定目标函数的斜率是解决本题的关键,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)求出f(x)的解析式;
(2)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2=4,过点P(0,
3
)的直线l交该圆于A,B两点,O为坐标原点,则△OAB面积的最大值是(  )
A、
3
B、2
C、2
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(-4,4)上的奇函数.当-4<x<0时,f(x)=loga(x+b),且图象过点(-3,0)与点(-2,1).
(Ⅰ)求实数a,b的值,并求函数f(x)的解析式;
(Ⅱ)若关于x的方程f(x)=m有两个不同的实数解,请写出实数m的取值范围;
(Ⅲ)解关于x的不等式(x-1)f(x)<0,写出解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:f(1)=-2,且对于任意的x∈R,都有f′(x)>2,则不等式f(2x)>2x+1-4的解集为(  )
A、(1,+∞)
B、(-∞,0)
C、(0,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}满足a2=4,a1+a4+a7=24,则a10=(  )
A、16B、18C、20D、22

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,2cosBsinC=sinA,则△ABC一定为(  )
A、等腰三角形B、直角三角形
C、钝角三角形D、正三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的三个内角A,B,C的对边,若a=2
3
,b=2
2
,A=60°,则角B等于(  )
A、45°或135°B、135°
C、60°D、45°

查看答案和解析>>

科目:高中数学 来源: 题型:

“cos2α=-
3
2
”是“α=kπ+
12
,k∈Z
”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案