精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的前n项和为Sn,且an=$\frac{n•{2}^{n}-{2}^{n+1}}{(n+1)({n}^{2}+2n)}$(n∈N+),则Sn=$\frac{{2}^{n+1}}{(n+1)(n+2)}$-1.

分析 通过裂项可知an=$\frac{{2}^{n+1}}{(n+1)(n+2)}$-$\frac{{2}^{n}}{n(n+1)}$,进而并项相加即得结论.

解答 解:∵an=$\frac{n•{2}^{n}-{2}^{n+1}}{(n+1)({n}^{2}+2n)}$=$\frac{{2}^{n+1}}{(n+1)(n+2)}$-$\frac{{2}^{n}}{n(n+1)}$(n∈N+),
∴Sn=$\frac{{2}^{n+1}}{(n+1)(n+2)}$-$\frac{{2}^{n}}{n(n+1)}$+$\frac{{2}^{n}}{n(n+1)}$-$\frac{{2}^{n-1}}{(n-1)n}$+…+$\frac{{2}^{3}}{3×4}$-$\frac{{2}^{2}}{2×3}$+$\frac{{2}^{2}}{2×3}$-$\frac{2}{1×2}$
=$\frac{{2}^{n+1}}{(n+1)(n+2)}$-$\frac{2}{1×2}$
=$\frac{{2}^{n+1}}{(n+1)(n+2)}$-1,
故答案为:$\frac{{2}^{n+1}}{(n+1)(n+2)}$-1.

点评 本题考查数列的前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知数列{an}前n项和为Sn,首项为a1,且$\frac{1}{2}$,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a3n+1)×(log2a3n+4),求证:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=$\left\{\begin{array}{l}2{e^{x-1}}\;,x<3\\{log_3}({x^2}-1),x≥3\end{array}$,则$f(f(\sqrt{10}))$=(  )
A.1B.2C.2eD.2e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.同时投掷两枚币一次,那么互斥而不对立的两个事件是(  )
A.“至少有1个正面朝上”,“都是反面朝上”
B.“至少有1个正面朝上”,“至少有1个反面朝上”
C.“恰有1个正面朝上”,“恰有2个正面朝上”
D.“至少有1个反面朝上”,“都是反面朝上”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点D是△ABC的边BC上一点,且AC=$\sqrt{3}$AD,$\sqrt{3}$CD=2AC,CD=2BD.
(Ⅰ)求B;
(Ⅱ)若△ABD的外接圆的半径为$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知$\overrightarrow{a}$=(-3,2,5),$\overrightarrow{b}$=(1,x,-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P(x,1)是抛物线x2=2py(p>0)上一点,若P到焦点的距离为3,则p的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a、b、c分别是角A、B、C所对的边,且满足a=3bcosC.
(Ⅰ)求$\frac{tanC}{tanB}$的值;
(Ⅱ)若a=3,tanA=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x≤2\\ x+y≥0\end{array}\right.$,则z=x+2y的最小值为(  )
A.-3B.$-\frac{5}{2}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

同步练习册答案