分析 (1)由$\frac{1}{2}$,an,Sn成等差数列,可得2an=$\frac{1}{2}+{S}_{n}$,当n=1时,2a1=$\frac{1}{2}+{a}_{1}$,解得a1.当n≥2时,2an-2an-1=an,化为:an=2a.利用等比数列的通项公式即可得出.
(2)bn=$lo{g}_{2}{2}^{(3n-1)}$•log2(3n+2)=(3n-1)(3n-2),可得$\frac{1}{{b}_{n}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$.利用“裂项求和”方法、数列的单调性即可证明.
解答 (1)解:∵$\frac{1}{2}$,an,Sn成等差数列,∴2an=$\frac{1}{2}+{S}_{n}$,
当n=1时,2a1=$\frac{1}{2}+{a}_{1}$,解得a1=$\frac{1}{2}$.
当n≥2时,2an-2an-1=$\frac{1}{2}+{S}_{n}$-$(\frac{1}{2}+{S}_{n-1})$=an,化为:an=2a.
∴数列{an}是等比数列,首项为$\frac{1}{2}$,公比为2.∴an=$\frac{1}{2}×{2}^{n-1}$=2n-2.
(2)证明:bn=(log2a3n+1)×(log2a3n+4)=$lo{g}_{2}{2}^{(3n-1)}$•log2(3n+2)=(3n-1)(3n-2),
∴$\frac{1}{{b}_{n}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$.
∴$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$=$\frac{1}{3}[(\frac{1}{2}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{8})$+…+$(\frac{1}{3n-1}-\frac{1}{3n+2})]$=$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$<$\frac{1}{6}$.
点评 本题考查了递推关系、等差数列与等比数列的通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
| 价格x(元) | 9 | 9.5 | 10 | 10.5 | 11 |
| 销售量y(万件) | 11 | 10 | 8 | 6 | 5 |
| A. | 7.66万件 | B. | 7.86万件 | C. | 8.06万件 | D. | 7.36万件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 项目 | 智慧技术 | 智慧产业 | 智慧应用 | 智慧服务 | 智慧治理 | 智慧人文 | 智慧生活 |
| 指标分数x | 6.8 | 7 | 6.8 | 6.8 | 7.2 | 7 | 7.4 |
| 智慧级别y | 9 | 8.8 | 9 | 9.1 | 9.2 | 8.8 | 9.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com