精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知椭圆:()的离心率为,右准线方程是直线l,点P为直线l上的一个动点,过点P作椭圆的两条切线,切点分别为AB(点Ax轴上方,点Bx轴下方).

1)求椭圆的标准方程;

2)①求证:分别以为直径的两圆都恒过定点C

②若,求直线的方程.

【答案】1.(2)①答案见解析:②

【解析】

1)计算得到得到答案.

2)计算切线,得到坐标,得到为直径的圆的圆方程,取计算得到答案;设,解得坐标,得到直线方程.

1,准线,解得,故

故椭圆方程为:.

2)①设切点,当时,

,则切线,所以点

为直径的圆:

由对称性可知定点在x轴上,令,过定点

同理,以为直径的圆过定点,得证.

②设,因为,所以

又因为,所以

所以直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面,底面为梯形,,且

I)求证:

II)求二面角_____的余弦值;

从①,②,③这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.

III)若是棱的中点,求证:对于棱上任意一点都不平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,给出命题;命题:函数的值域为

1)若为真命题,求实数的取值范围;

2)若为真,为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)的导函数.

1)若a=b=cf4=8,求a的值;

2)若abb=c,且fx)和的零点均在集合中,求fx)的极小值;

3)若,且fx)的极大值为M,求证:M

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥PABCD的底面ABCD是矩形,PA⊥底面ABCD,点EF分别是棱PCPD的中点,则

①棱ABPD所在直线垂直;

②平面PBC与平面ABCD垂直;

③△PCD的面积大于△PAB的面积;

④直线AE与直线BF是异面直线.

以上结论正确的是________.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015秋海口校级期中)直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂C发生爆炸出现毒气泄漏,已知毒气以圆形向外扩散,且半径以每分钟的速度增大. 一所学校A,位于工厂C南偏西,且与工厂相距.消防站B位于学校A的正东方向,且位于工厂C南偏东,立即以每分钟的速度沿直线赶往工厂C救援,同时学校组织学生PA处沿着南偏东的道路,以每分钟的速度进行安全疏散(与爆炸的时间差忽略不计).要想在消防员赶往工厂的时间内(包括消防员到达工厂的时刻),保证学生的安全,学生撤离的速度应满足什么要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正整数,Sn为其前n项和,对于n123,有,其中为使为奇数的正整数,当时,的最小值为__________;当时,___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15.

1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;

平均车速超过的人数

平均车速不超过的人数

合计

男性驾驶员

女性驾驶员

合计

2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,求的分布列和数学期望.

参考公式:

临界值表:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案