精英家教网 > 高中数学 > 题目详情
1.“a=1”是“直线l1:ax+2y-8=0与直线l2:x+(a+1)y+4=0平行”的(  )
A.充分而不必要条件B.必要而充分不条件
C.充要条件D.既不充分也不必要条件

分析 根据直线平行的条件,结合充分条件和必要条件的定义进行判断.

解答 解:若直线l1:ax+2y-8=0与直线l2:x+(a+1)y+4=0平行,
则a(a+1)-2=0,
即a2+a-2=0,解得a=1或a=-2,
当a=-2时,直线l1方程为-2x+2y-8=0,即x-y+4=0,直线l2:x-y+4=0,此时两直线重合,则a≠-2,
故“a=1”是“直线l1:ax+2y-8=0与直线l2:x+(a+1)y+4=0平行”的充要条件,
故选:C.

点评 本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若x,y满足$\left\{\begin{array}{l}kx+y≤4\\ 2y-x≤4\\ x≥0\\ y≥0\end{array}\right.$,且z=5y-x的最小值为-8,则k的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某中学为了检验1000名在校高三学生对函数模块掌握的情况,进行了一次测试,并把成绩进行统计,得到的样本频率分布直方图如图所示,则考试成绩的中位数大约(保留两位有效数字)为(  )
A.70B.73C.75D.76

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若不等式组$\left\{\begin{array}{l}{x-1≤0}\\{kx-y≥0}\\{x+y+2≥0}\end{array}\right.$表面的平面区域为Ω,则当实数k≥0,区域Ω的面积取得最小值时的k的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若$\frac{sinθ}{|sinθ|}$+$\frac{|cosθ|}{cosθ}$=0,试判断sin(cosθ)•cos(sinθ)的符号.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知(1+$\frac{2}{i}$)2=a+bi(a,b∈R,i为虚数单位),则a+b=(  )
A.-7B.7C.C-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.把复数z的共轭复数记作$\overline{z}$,复数z=3-i(i为虚数单位),则复数$\frac{\overline{z}}{1+i}$在复平面内所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三角形ABC的三个顶点都在椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$上,且AB⊥x轴,AC∥x轴,则$\frac{|AC|•|AB|}{|BC{|}^{2}}$的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)对任意的x∈R,都有f(x-1)=f(x+1),当x∈(-2,0]时,f(x)=x+1,则当2<x≤4时,$\frac{f(x)}{x}$的最大值为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案