精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(x≤0)}\\{f(x-1)+1(x>0)}\end{array}\right.$,g(x)=f(x)-x,把函数g(x)的零点按从小到大的顺序排列成一个数列,则该数的前n项和为(  )
A.Sn=$\frac{n(n-1)}{2}$B.Sn=$\frac{n(n+1)}{2}$C.Sn=2n-1D.Sn=2n-1-1

分析 根据解析式函数f(x)得出归纳推理得出f(n)=n,n∈N,得出g(x)的零点为:0,1,2,3,4…n-1,运用等差数列的知识求解即可.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(x≤0)}\\{f(x-1)+1(x>0)}\end{array}\right.$,
∴f(0)=0,f(1)=f(0)+1=1,f(2)=f(1)+1=2,
f(3)=f(2)+1=3,
归纳推理得出f(n)=n,n∈N
∵g(x)=f(x)-x,
∴g(x)的零点为:0,1,2,3,4…n-1,
∵函数g(x)的零点按从小到大的顺序排列成一个数列,
∴该数的前n项和为:$\frac{n(0+n-1)}{2}$=$\frac{n(n-1)}{2}$
故选:A

点评 本题考查了函数的性质,零点的问题,融合了数列的知识,综合性较强,难度较大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设i为虚数单位,复数z=(1+i)2+2,则z的共轭复数为(  )
A.-2iB.2iC.2-2iD.2+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知Ω是不等式组$\left\{\begin{array}{l}{x+y<6}\\{x>0}\\{y>0}\end{array}\right.$表示的平面区域,A是不等式组$\left\{\begin{array}{l}{x<4}\\{y>0}\\{x-2y>0}\end{array}\right.$表示的平面区域,若向区域Ω上随机投一点P,则点P落入区域A的概率为$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设复数z1=1-i,z2=$\sqrt{3}$+i,其中i为虚数单位,则$\frac{\overline{{z}_{1}}}{{z}_{2}}$的虚部为(  )
A.$\frac{1+\sqrt{3}}{4}i$B.$\frac{1+\sqrt{3}}{4}$C.$\frac{\sqrt{3}-1}{4}i$D.$\frac{\sqrt{3}-1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知m,n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是(  )
A.若α⊥β,m∥α,则m⊥βB.若m∥α,n∥m,则n∥α
C.若m∥α,n∥β,且m∥n,则α∥βD.若m⊥β,m∥α,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在数列{an}中,a1=3,an+1=$\frac{{3}^{n+1}{a}_{n}}{{a}_{n}+{3}^{n}}$
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{a}_{n}}$,数列{bn}的前n项和为Tn,若a>Tn对任意n∈N+恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知不等式x2-ax+a-2>0(a>2)的解集为(-∞,x1)∪(x2,+∞),则x1+x2+$\frac{1}{{x}_{1}{x}_{2}}$的最小值为(  )
A.$\frac{1}{2}$B.2C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率e=$\frac{1}{2}$,点A为椭圆上一点,$∠{F_1}A{F_2}={60°},且{S_{△{F_1}A{F_2}}}$=$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设动直线l:kx+m与椭圆C有且只有一个公共点P,且与直线x=4相交于点Q.问:在x轴上是否存在定点M,使得以PQ为直径的圆恒过定点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对某中学高二某班40名学生是否喜欢数学课程进行问卷调查,将调查所得数据绘制成二堆条形图如图所示.
(Ⅰ)根据图中相关数据完成以下2×2列联表;并计算在犯错误的概率不超过多少的前提下认为“性别与是否喜欢数学课程有关系”?
喜欢数学课程不喜欢数学课程总计
总计40
(Ⅱ)从该班所有女生中随机选取2人交流学习体会,求这2人中喜欢数学课程的人数X的分布列和数学期望.
参考公式:K2=$\frac{(a+b+c+d)(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
临界值附表:
P(K2≥k00.50.40.250.150.10.01
k00.4550.7081.3232.0722.7066.635

查看答案和解析>>

同步练习册答案