2£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊe=$\frac{1}{2}$£¬µãAΪÍÖÔ²ÉÏÒ»µã£¬$¡Ï{F_1}A{F_2}={60¡ã}£¬ÇÒ{S_{¡÷{F_1}A{F_2}}}$=$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©É趯ֱÏßl£ºkx+mÓëÍÖÔ²CÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãP£¬ÇÒÓëÖ±Ïßx=4ÏཻÓÚµãQ£®ÎÊ£ºÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãM£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²ºã¹ý¶¨µãM£¿Èô´æÔÚ£¬Çó³öµãMµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉe=$\frac{1}{2}$¿ÉµÃ£¬a2=4c2£¬ÔÙ¸ù¾ÝÈý½ÇÐÎÃæ»ý¹«Ê½½âµÃÍÖÔ²·½³Ì£®
£¨2£©Ö±ÏߺÍÍÖÔ²ÁªÁ¢·½³Ì×飬µÃµ½µãP×ø±êÀûÓÃÖ±¾¶µÃ´¹Ö±¹ØÏµµÃµ½ÏàÓ¦¹ØÏµÊ½£¬´Ó¶øÁÐʽÇó½â£®

½â´ð ½â£º£¨1£©ÓÉe=$\frac{1}{2}$¿ÉµÃ£¬a2=4c2£¬¢Ù
${S}_{¡÷{F}_{1}A{F}_{2}}=\frac{1}{2}|A{F}_{1}||A{F}_{2}|sin60¡ã$¨T$\sqrt{3}$£¬¿ÉµÃ£¬|AF1||AF2|=4
ÔÚ¡÷F1AF2ÖÐÓÉÓàÏÒ¶¨ÀíÓУ¬$|{F}_{1}A{|}^{2}+|{F}_{2}A{|}^{2}-2|{F}_{1}A||{F}_{2}A|cos60¡ã$=4c2£¬ÓÖ|AF1|+|AF2|=2a
¿ÉµÃa2-c2=3¢Ú
ÁªÁ¢¢Ù¢ÚµÃ£¬a2=4£¬c2=1£¬¡àb2=3£¬
ËùÒÔÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$
£¨2£©ÉèµãP£¨x0£¬y0£©ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ
£¨4k2+3£©x2+8kmx+4m2-12=0
¡÷=64k2m2-4£¨4k2+3£©£¨4m2-12£©=0£¬»¯¼òµÃ4k2-m2+3=0£¬
¡à${x}_{0}=-\frac{4km}{4{k}^{2}+3}=-\frac{4k}{m}£¬{y}_{0}=\frac{3}{m}$
ËùÒÔP£¨$-\frac{4k}{m}£¬\frac{3}{m}$£©
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{x=4}\end{array}\right.$£¬µÃQ£¨4£¬4k+m£©£¬¼ÙÉè´æÔÚµãM£¬×ø±êΪ£¨x1£¬0£©£¬Ôò$\overrightarrow{MP}=£¨-\frac{4k}{m}-{x}_{1}£¬\frac{3}{m}£©$£¬
$\overrightarrow{MQ}=£¨4-{x}_{1}£¬4k+m£©$£¬ÒòΪÒÔPQΪֱ¾¶µÄÔ²ºã¹ýµãM£¬ËùÒÔ$\overrightarrow{MP}•\overrightarrow{MQ}=0$£¬¼´$-\frac{16k}{m}+\frac{4k{x}_{1}}{m}-4{x}_{1}+{x}_{1}^{2}+\frac{12k}{m}+3=0$
ËùÒÔÓÐ$£¨4{x}_{1}-4£©\frac{k}{m}+{x}_{1}^{2}-4{x}_{1}+3=0$¶ÔÈÎÒâµÄk£¬m¶¼³ÉÁ¢£®
Ôò$\left\{\begin{array}{l}{4{x}_{1}-4=0}\\{{x}_{1}^{2}-4{x}_{1}+3=0}\end{array}\right.$½âµÃx1=1£¬¹Ê´æÔÚ¶¨µãM£¨1£¬0£©·ûºÏÌâÒ⣮

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²·½³ÌµÄÇó½âºÍÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌ⣬Êô³£¿¼ÌâÐÍ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÈôÏòÁ¿$\overrightarrow{a}$=£¨2£¬x+1£©£¬$\overrightarrow{b}$=£¨x+2£¬6£©£¬ÓÖ$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪÈñ½Ç£¬ÔòʵÊýxµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®{x|x£¾-$\frac{5}{4}$ÇÒx¡Ù2}B£®{x|x£¾-$\frac{5}{4}$}C£®{x|x£¼-$\frac{5}{4}$ÇÒx¡Ù-5}D£®{x|x£¼-$\frac{5}{4}$}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}-1£¨x¡Ü0£©}\\{f£¨x-1£©+1£¨x£¾0£©}\end{array}\right.$£¬g£¨x£©=f£¨x£©-x£¬°Ñº¯Êýg£¨x£©µÄÁãµã°´´ÓСµ½´óµÄ˳ÐòÅÅÁгÉÒ»¸öÊýÁУ¬Ôò¸ÃÊýµÄǰnÏîºÍΪ£¨¡¡¡¡£©
A£®Sn=$\frac{n£¨n-1£©}{2}$B£®Sn=$\frac{n£¨n+1£©}{2}$C£®Sn=2n-1D£®Sn=2n-1-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚÈçͼËùʾµÄ¼¸ºÎÌåABCDEFGÖУ¬ËıßÐÎABCDÊDZ߳¤Îª4µÄÕý·½ÐΣ¬DE¡ÍÆ½ÃæABCD£¬DE¡ÎAF¡ÎBG£¬HÊÇDEµÄÖе㣬ACÓëBDÏཻÓÚN£¬DE=2AF=2BG=4
£¨¢ñ£©ÔÚFHÉÏÇóÒ»µãP£¬Ê¹NP¡ÎÆ½ÃæEFC£»
£¨¢ò£©Çó¶þÃæ½ÇE-FC-GµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬¡ÏADC=90¡ã£¬CD¡ÎAB£¬AB=2£¬AD=CD=1£¬µãE¡¢F·Ö±ðΪAB¡¢BCµÄÖе㣬½«¡÷ADCÑØACÕÛÆð£¬Ê¹Æ½ÃæADC¡ÍÆ½ÃæABC£¬µÃµ½¼¸ºÎÌåD-ABC£¬Èçͼ2Ëùʾ£®
£¨1£©ÇóÖ¤£ºBC¡ÍÆ½ÃæACD£»
£¨2£©Ç󼸺ÎÌåD-ABCµÄÌå»ý£»
£¨3£©ÔÚÏß¶ÎBDÉÏÊÇ·ñ´æÔÚÒ»µãG£¬Ê¹µÃÆ½ÃæGEF¡ÎÆ½ÃæACD£¬Èô´æÔÚ£¬ÊÔÈ·¶¨µãGµÄλÖò¢ÓèÒÔÖ¤Ã÷£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÇúÏßCÉÏÈÎÒâÒ»µãpÓëÁ½µã£¨-2£¬0£©£¬£¨2£¬0£©Á¬ÏßµÄбÂʵij˻ýΪ-$\frac{1}{2}$£®
£¨1£©ÇóÇúÏßC µÄ¹ì¼£·½³Ì£»
£¨2£©¹ýµãM£¨1£¬1£©µÄÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬ÇÒMµãÊÇÏß¶ÎABµÄÖе㣬ÇóÖ±ÏßlµÄ·½³Ì²¢ÇóÏß¶ÎABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=ln£¨x-1£©+$\frac{2a}{x}$£¨a¡ÊR£©
£¨¢ñ£©Èôa=3£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Èç¹ûµ±x£¾1£¬ÇÒx¡Ù2ʱ£¬$\frac{{ln£¨{x-1}£©}}{x-2}£¾\frac{a}{x}$ºã³ÉÁ¢£¬ÇóʵÊýaµÄ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªÕýËÄÀâÖùABCD-A1B1C1D1µÄµ×Ãæ±ß³¤AB=6£¬²àÀⳤAA1=2$\sqrt{7}$£¬ËüµÄÍâ½ÓÇòµÄÇòÐÄΪO£¬µãEÊÇABµÄÖе㣬µãPÊÇÇòOÉÏÈÎÒâÒ»µã£¬ÓÐÒÔÏÂÅжϣº
¢ÙPEµÄ³¤µÄ×î´óÖµÊÇΪ9£»
¢ÚÈýÀâ×¶P-EBCµÄÌå»ýµÄ×î´óÖµÊÇ$\frac{32}{3}$£»
¢ÛÈýÀâ×¶P-AEC1µÄÌå»ýµÄ×î´óÖµÊÇ20£»
¢Ü¹ýµãEµÄÆ½Ãæ½ØÇòOËùµÃ½ØÃæÃæ»ý×î´óʱ£¬B1C´¹Ö±ÓڸýØÃ棬
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ¢Ù¢Û£¨ °ÑÄãÈÏΪÕýÈ·µÄ¶¼Ð´ÉÏ £©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Éè¡÷ABCµÄÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬ÇÒ2$\sqrt{2}$£¨sin2A-sin2C£©=£¨a-b£©sinB£¬$\frac{c}{sinC}$=2$\sqrt{2}$
£¨1£©Çó½ÇC£»
£¨2£©Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸