| A. | {x|x>-$\frac{5}{4}$且x≠2} | B. | {x|x>-$\frac{5}{4}$} | C. | {x|x<-$\frac{5}{4}$且x≠-5} | D. | {x|x<-$\frac{5}{4}$} |
分析 由已知向量的夹角为锐角,得到数量间大于0,并且不共线,由此得到所求.
解答 解:因为向量$\overrightarrow{a}$=(2,x+1),$\overrightarrow{b}$=(x+2,6),又$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角,
所以$\overrightarrow{a}•\overrightarrow{b}$=2(x+2)+6(x+1)=8x+10>0,得到x>$-\frac{5}{4}$,
又$\overrightarrow{a},\overrightarrow{b}$不共线,所以2×6-(x+1)(x+2)≠0,则x≠-5且x≠2,
所以实数x的取值范围为{x|x>-$\frac{5}{4}$且x≠2};
故选:A.
点评 本题开始了向量的数量间公式的运用;由数量间公式得到关于x的不等式;特别注意数量间大于0与夹角为锐角不等价.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1+\sqrt{3}}{4}i$ | B. | $\frac{1+\sqrt{3}}{4}$ | C. | $\frac{\sqrt{3}-1}{4}i$ | D. | $\frac{\sqrt{3}-1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com